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Parallelizing Modified Cuckoo Search on
MapReduce Architecture

Chia-Yu Lin, Yuan-Ming Pai, Kun-Hung Tsai, Charles H.-P. Wen, and Li-Chun Wang

Abstract—Meta-heuristics typically takes long time
to search optimality from huge amounts of data samples
for applications like communication, medicine, and civil
engineering. Therefore, parallelizing meta-heuristics to
massively reduce runtime is one hot topic in related
research. In this paper, we propose a MapReduce
modified cuckoo search (MRMCS), an efficient modified
cuckoo search (MCS) implementation on a MapReduce
architecture — Hadoop. MapReduce particle swarm
optimization (MRPSQO) from a previous work is also
implemented for comparison. Four evaluation functions
and two engineering design problems are used to
conduct experiments. As a result, MRMCS shows better
convergence in obtaining optimality than MRPSO with
two to four times speed-up.

Index Terms—Cuckoo search, MapReduce,
meta-heuristics, particle swarm optimization.

1. Introduction

Meta-heuristics such as particle swarm optimization
(PSO) and cuckoo search (CS) are widely used in
engineering optimization. PSO was inspired by foraging
social behavior of birds and fishes'"!. At the beginning, the
species have no idea about the food location and thus
search according to their experience and intuition. Once an
individual finds the food, it informs other individuals of
such location. Accordingly, others adjust their flight.
Bird/fish foraging behavior is a concept of socially mutual
influence, which guides all individuals to move toward the
optimum. PSO is prevailing because it is simple, requires
little tuning, and is found effective for problems of
wide-range solutions.

Moreover, cuckoo search (CS), an optimization
algorithm was proposed in 2009, The cuckoo eggs mimic
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the eggs of other host birds to stay in their nests. This
phenomenon leads to the evolution of egg appearance
towards optimal disguise. In order to improve the
performance of cuckoo search, a modified cuckoo search
(MCS) was later proposed in 20117 and successfully
demonstrated good performance. Based on [3], we
parallelize MCS to propose a MapReduce modified cuckoo
search (MRMCS) in this work. As a result, our MRMCS
outperforms previously proposed MapReduce particle
swarm optimization (MRPSO)™ on all evaluation functions
and two engineering design problems in terms of both
convergence of optimality and runtime.

MapReduce® is a widely-used parallel programming
model in cloud platforms and consists of mapping and
reducing functions inspired by dividing and conquering.
Mapping and reducing functions execute the computation
in parallel, combine the intermediate result, and output the
final result. Independent data are suitable for the
MapReduce computing. For example, in the k-means
algorithm, each data node computes the distance from itself
to all central nodes and thus the work!® proposed its
parallelized version on MapReduce in 2009. Similarly,
particle swarm optimization (PSO) addresses that each data
node computes its own best value by itself and thus were
also  successfully parallelized on a MapReduce
framework!¥.

Since PSO can be successfully parallelized into
MRPSO™, we are motivated to parallelize MCS on a
MapReduce architecture and compare the performance of
MRMCS with that of MRPSO. However, two critical issues
are worth pointing out when parallelizing MCS on a
MapReduce architecture: 1) job partitioning (i.e. which jobs
go to the mappers and which jobs go to the reducers) needs
to be decided in MRMCS; 2) the support of information
exchange is critical during evolution in MCS. However, an
original MapReduce architecture like Hadoop cannot
support this and thus need proper modification. Therefore,
this work is motivated to deal with these two problems to
enable good parallelism on MRMCS.

The rest of the paper is organized as follows. Section 2
introduces the fundamentals of MCS, and Section 3
describes the MapReduce architecture in detail. MRMCS is
proposed and elaborated in Section 4. Section 5 shows

several optimization applications with MRMCS and
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compares their performance and runtime with MRPSO.
Finally, Section 6 concludes the paper.

2. Modified Cuckoo Search

CS was proposed for optimization problems by Yang et
al. in 2009™”), Later, in order to improve the performance of
the baseline CS, Walton et al. in 2011 added more
perturbations to the generation of population and thus
proposed MCS in [3]. In this work, we further parallelize
MCS on a MapReduce architecture and propose MRMCS.

The original CS was inspired by the behavior of cuckoo
laying eggs. Cuckoos tend to lay eggs in the nests of other
host birds. If the host birds can differentiate cuckoo eggs
from their own eggs, they may throw away cuckoo eggs or
all eggs in the nest. This leads to the evolution of cuckoo
eggs mimicking the eggs of local host birds. Yang et al.””
conducted the three following rules from the behavior of
cuckoo laying eggs for optimization:

e Each egg laid by one cuckoo is a set of solution
coordinates and is dumped in a random nest at a time.

e A fraction of the nests containing the eggs (solutions)
with best fitness will carry over to the next generation.

e The number of nests is fixed and there is a probability
that a host can discover such alien egg. If this happens, the
host can either discard the egg or the nest, resulting in
building a new nest in a new location.

Besides the three rules stated above, the use of Lévy
flight””! for both the local and global search is another
important component in CS. The Lévy flight, also
frequently used in other search algorithms!”), is a random
walk in which the step lengths have a probability
distribution with heavy tails. The egg generated by Lévy
flight compares its fitness value with that of the current egg.
If the fitness value of the new egg is better than the current
one, the new egg takes place of the position. The random
size of Lévy flight is controlled by a constant step size a
where « can be adjusted according to the problem size of
target applications. The fraction of nests to be abandoned is
the only one parameter which is needed to be adjusted
during the CS evolution.

In order to speed up the convergence of evolution,
Walton et al.’*) proposed MCS. There are two modifications
over CS. The first change is that the step size ¢, is no

longer a constant and can decrease as the number of
generation increases. Adjusting ¢; dynamically leads to

faster convergence on optimality. At each generation, a new
step size of Lévy flight is

ale/\/E

where 4 is initialized as 1 and G is the generation number.
This setting is used for deciding the fraction of nests to be
abandoned.

The second change is the information exchange

between eggs. In MCS, eggs with the best fitness values are
put in the top-egg group. Every top egg will be paired with
a randomly-picked egg. During the selection process, if the
same egg is picked, a new egg is generated with the step
size

a, = 4/G* .

Otherwise, a new egg is generated from two top eggs using

the golden ratio
$=(1+5) /2 :

The fraction of nests to be abandoned and the fraction of
nests to generate next top eggs are two adjustable
parameters in MCS. Algorithm 1 shows the details of MCS
as follows.
Algorithm 1. MCS Algorithm in [3]
1: A«MaxLévyStepSize
2: ¢ «<GoldenRatio
3: Initialize a population of n host nests x;, ,(i=1,2,--,n)
4: for all x; do
5: Calculate fitness F, = f(x,)
6: end for
7: Generation number G<—1
8: while
NumberObjectiveEvaluations<MaxNumberEvaluations
do
9: GG+l
10: Sorts nests by order of fitness
11: for all nests to be abandoned do

12: Calculate position x;

13: Calculate Lévy flight step size «; < A/ JG

14: Perform Lévy flight from x; to generate new egg

Xk

15: X, < X,

16 Fef(x)

17: end for

18: for all of the top nests do

19: Calculate position x;

20: Pick another nest from the top nests at random x;

21: if x=x; then

22: Calculate  Lévy  flight step  size
a, < A/G*

23: Perform Lévy flight from x; to generate

new egg X

24: F,.=f(x)

25: Choose a random nest / from all nests

26: if F,>F, then

27: X, <X,

28: F, <« F,

29: end if

30: else
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31 dx =|x,~x,|/¢

32: Move distance dx from the worst nest to the
best nest to find x;

33: F, = f(x,)

34. Choose a random nest / from all nests

35: if F, >F, then

36: X, <X,

37: F «F,

38: end if

39: end if

40: end for

41: end while

3. MapReduce Architecture

MapReduce”” is a patented software framework
introduced by Google to support distributed computing on
large data volumes on clusters of computers. MapReduce
can also be considered as a parallel programming model
and it aims at processing large datasets. A MapReduce
framework consists of mapping and reducing functions
which are inspired by dividing and conquering. The map
function, which is also known as the mapper, parallelizes
the computation on large-scale clusters of machines. The
reduce function, which is also called the reducer, collects
the intermediate results from the mappers and then outputs
the final result. In the MapReduce architecture, all data
items are represented as the form of keys paired with
associated values. For example, in a program that counts
the frequency of occurrences for words, the key is the word
itself and the value is its frequency of occurrences.
Applications with independent input data or computation
are suitable to be parallelized on the MapReduce
framework. For example, for PSO, each data node can
finish computing its own best value without acquiring
information from other nodes. Therefore, PSO is a good
candidate that can be parallelized on the MapReduce
framework to save runtime greatly. Such idea was termed
MRPSO and realized in [4].

3.1 Map Function (Mapper)

A MapReduce job usually splits the input data set into
many independent chunks which are processed by the map
function in a completely parallel manner. The map function
takes a set of (key, value) pairs and generates a set of
intermediate (key, value) pairs by applying a designated
function to all these pairs, that is,

Map: (ky, vi) — list(ky, vy).

3.2 Reduce Function (Reducer)

Before running the reduce function, the shuffle and
sort functions are applied to the outputs from the map

function. Then the new outputs become the input to the
reduce function. The reduce function merges all pairs with
the same key using a reduction function:

Reduce: (ky, list(v,)) — list(ks, v3).

The input type and output type of a MapReduce job are
illustrated in Fig. 1, respectively. The data which is a (key,
value) pair is the input to the mapper. The mapper extracts
meaningful information from each record independently.
The output of the mapper is sorted and combined according
to the key and passed to the reducer where the reducer
performs aggregation, summarization, filtering, or
transformation of data and writes the final result.

3.3 MapReduce Example

An example of the overall Map/Reduce framework is
shown in Fig. 2. This is a program named “WordCount”
used for counting the frequency of occurrences for different
words. The input data is partitioned into several files and
sent to different mappers to count occurrences of one target
word. The input key is ignored but arbitrarily set to be the
line number for the input value. The output key is the word
under interest, and the output value is its counts. The
shuffle and sort functions are performed to combine key
values output from the mappers. Finally, the reducer merges
the count value of each word and writes out the final result
(i.e. the frequency of occurrences).

3.4 MapReduce Implementation

Google has published its MapReduce implementation
in [5], but has not yet released the system to the public.
Thus, the Apache Lucene project developed Hadoop, a
Java-based platform, as an open-source MapReduce
implementation. Hadoop™ was derived from Google’s
MapReduce architecture and the Google file system (GFS).
Data-intensive and distributed applications can work on
Hadoop which can support up to thousands of computing
nodes. In this work, we referred to [4] and implemented
PSO and MCS into MRPSO and MRMCS, respectively, on
the Hadoop platform.

(input) <ky, vi> — map — combine — reduce — <k;, v3> (output)

Fig. 1. Input and output types of a MapReduce job.
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Fig. 2. Example of a MapReduce framework.
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Fig. 3. Overall flowchart of MRMCS.
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Fig. 4. One of the map function in MRMCS.

4. MRMCS

Parallelizing MCS on a MapReduce architecture is
elaborated in this section. Two major problems remain to be
solved. First, we have to determine a strategy for job
partitioning. In other words, we need to decide jobs that
mappers and reducers need to take care, respectively.
Second, information is enabled to exchange in MRMCS,
and computing nodes need to communicate with each other
in the MapReduce architecture, which was not supported
originally.  Therefore, @~ we  propose  3-egg-tuple
transformation to facilitate exchange information between
eggs.

Fig. 3 shows the overall flow of MRMCS. The
3-egg-tuple transformation function outputs a new sample
composed of original samples (i, j, k) for mappers, where i
denotes the index of current egg, j is the index of a
randomly-picked egg to be paired with egg i, and & is the
index of the nest for putting the new egg after evolution.
After the 3-egg-tuple transformation process, mappers
perform gold-ratio crossover or Lévy flight to generate a
new egg. Later, each reducer chooses the best eggs as the
descendant sample among all candidates of its own. Details
of three steps stated above are further discussed as follows.

4.1 3-Egg-Tuple Transformation

In MCS, eggs are separated according to top-egg groups
and bad-egg groups. The egg picked from one top-egg
group and the other one randomly picked from another
top-egg group are first paired and then MCS performs the
crossover operation over the pair to generate a new egg. If
two eggs are picked from the same top-egg group
coincidently, the Lévy flight is used instead to generate the
new egg. Since the egg information is not preserved on
different mappers in the MapReduce architecture, we
combines information from three eggs into one and such
function is called 3-egg-tuple transformation. The outputs
of 3-egg-tuple transformation function are sets of (current
egg index, randomly-picked egg index, target-nest index for
putting the new egg) denoted as (7, j, k). Each 3-egg-tuple (i,
J, k) is sent to a mapper for generating a new egg.

4.2 MRMCS Mappers

One key challenge of parallelizing MCS on a
MapReduce platform is job partitioning. We have to decide
which jobs go to mappers and which jobs go to reducers.
The general rule is that mappers take charge of independent
jobs and reducers are responsible for combining the results.
Since operations of crossover and Lévy flight for new egg
generation are independent among all samples, mappers are
assigned to perform the new-egg generation. The
3-egg-tuples are the input to new-egg generation in
mappers and each new-egg generation can be divided into
three cases.

* Case 1: The top egg x; and top egg x; are not drawn
from the same nest. The egg x; is first duplicated and placed
at the nest n; for the next generation. Then the egg x; and
egg x; are further used to perform the crossover operation
and generate a new egg to be placed at the nest n;. Fig. 4
shows an example for this case.

* Case 2: The top egg x; and top egg x; are drawn from
the same nest. The egg x; is first duplicated and placed at
the nest n; for the next generation. The Lévy flight
operation is performed on the egg x; instead and a new egg
is generated to be placed at the nest n;. Fig. 5 shows an
example for Case 2.

Cuse2:i=j Top Eggs group Bad Eggs group
ij

[E1 [E2 |E3 | E4 [ B5 [ E6 | E7

E8 | B9 |El0]

Levy Flight

New Egg:
E3’
) \ K

N
El |E2 [(E3 |E4 |ES |E6 |E7 |E8 |[E9 |E10
E3’

Fig. 5. Case two of the mapper function in MRMCS.
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Case3: Top Eggs group Bad Eggs group
I
[E1 [B2 [E3 [E4 [ES [E6 [E7 |E8 [EO [El0]
Levy Flight
E9’
k=i
A

El |E2 |(E3 |E4 |E5 [E6 |E7 |E8 [E9 |E10
E3’

Fig. 6. Case three of the mapper function in MRMCS.
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Fig. 7. Example on the reduce function.

* Case 3: The Lévy flight operation is performed on the
bad egg x; directly and a new egg is generated to be placed
at n;=n;, as shown in Fig. 6.

4.3 MRMCS Reducers

Reducers are responsible for combing the intermediate
results from mappers. In MRMCS, reducers determine the
next-generation egg of the nests, respectively. Fig. 7 shows
an example for the reducer operation. After mappers
generate new eggs, every nest may contain more than one
egg. Each reducer finds the best value from all eggs in one
nest and uses the egg with the best value as the next
generation. The results of reducers are used as the input to
the next MRMCS generation.

Algorithms 2 and 3 summarize the details of mapper
operations including three cases stated above and the
reducer operations in MRMCS.

Algorithm 2. MRMCS on Map
1: A<~MaxLévyStepSize
: ¢ <GoldenRatio
¢ f(x;) < The fitness of x,
: definition: Mapper ( key, value )
: input: (Last iteration Fitness value, S),
S:{(xl,xj,xk ) N { X, X)Xy )}, a set of (the current egg,

W\ A W N

a random egg, the nest for putting new egg).
6: if Bad nest then
7:  Pick the nest n;
8:  Calculate Lévy flight step size o < A/ JG
9:  Perform Lévy flight from x; to generate new egg x;
10:  x < x,

Il: F <« f(x)

12: end if

13: if Top nest then

14:  Pick the nest n;

15:  Randomly pick another nest n; from another top nest
16: if i=j then

17: Calculate Lévy flight step size a, < 4/G>

18: Perform Lévy flight from x; to generate new
egg X;

19: Fo=1(x)

20: else

21: dx =|x,~x,| /¢

22: Move distance dx from the worst nest to the best
nest to find x;

23: Fo=7(x)

24: end if

25: end if

Algorithm 3. MRMCS on Reduce
1: definition: Reducer (key, valuelist ):
2: input: (Last iteration fitness value, a population of n
host nest F;, i=1, 2,-+, n)

3: for all F; do

4:  Find the best value xpe Of F;
5:  Calculate fitness F, = f(X,.y)
6: end for

5. Evaluations and Applications

In our experiments, we implemented both serial and
parallel versions for MCS and PSO on Hadoop. The serial
MCS generated the new egg of every nest and replaced the
old egg with the better one serially. The process of
MRMCS was similar to the serial MCS. However, instead
of performing MCS sequentially, in order to exchange
information on Hadoop, the 3-egg-tuple transformation
proceeded before executing the mapping and reducing
functions. The output of 3-egg-tuple transformation was the
input to the MapReduce operation.

Hadoop carried out a sequence of MapReduce
operations, each of which evaluated a single iteration of
MCS. In each MapReduce operation, Hadoop called the
mapping function (as in Algorithm 2) and the reducing
function (as in Algorithm 3). Mappers in Hadoop generated
the new egg of every nest through the crossover or Lévy
flight operation in parallel and reducers chose the best egg
from all candidates of every nest, respectively. The output
of each MapReduce operation represented the best egg of
each nest. MRPSO was also implemented according to [4].
Various evaluations of MRMCS and MRPSO in terms of
performance and runtime were compared in the following
sections.

Experiments were conducted on a computer with an
AMD FX(tm)-8150 eight-core processor and 12 GB
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memory. Eight virtual machines (VMs) were run on the
physical machine. A 10 G disk and a 1 G memory were
allocated to each VM. Hadoop version 0.21 in Java 1.7 was
used as the MapReduce system for all experiments. The
input dataset (containing 1000 data nodes) was generated
by Latin hypercube sampling'’ with respect to different
applications. Here four evaluation functions and two
engineering optimization applications!'”  with  their
experimental results are presented as follows, respectively.

5.1 Function Griewank

The Griewank function can be expressed as
d d
£ (x)=(1/4000)> x> —Hcos(xl./xﬁ)+l
i=1 i=1

where in our experiment, dimension d is set as 30, x; is a
random variable, x;€[—600, +600], and i is their index from
1 to d. Fig. 8 compares the performance of MRMCS and
MRPSO for Griewank. As a result, MRMCS and MRPSO
found the minimum values at the scale of 107 and 107
after 3000 times of iteration evolution, demonstrating that
MRMCS shows a faster convergence than MRPSO does.
Fig. 9 compares the runtime of MRMCS and MRPSO
on Griewank using 1, 2, 4, and 8 virtual machines,
respectively. As you can see, MRMCS run faster than
MRPSO. Such phenomenon can be attributed to two

reasons: 1) MRPSO in [4] did not use fitness values as keys.

As a result, in each iteration, searching the optimal value
among all samples requires more time for additional
comparison operations. 2) MRPSO requires an extra file for
the dependent list as its input data. However, such a large
file incurs more processing time to the total runtime. More
specifically, in Fig. 9, we can also observe that the runtime
of MRMCS decreases when VM increases. Although the
runtime reduction is not linear, MRMCS still runs more
efficiently than MRPSO does on Hadoop.

5.2 Function Rastrigrin

Define the second evaluation function—Rastrigrin as
d
£ (x)=10d + > [x} —10cos(27x,)]
i=1

where in our experiment, dimension d is set as 30, x; is a
random variable, x;e[-5.12, +5.12], and i is their index
from 1 to d. The performance comparison of MRMCS and
MRPSO for Rastrigin is shown in Fig. 10. Surprisingly, the
minimum value found by MRMCS is much smaller than
that found by MRPSO after 3000 times of iteration
evolution. Again, MRMCS demonstrates a better
convergence than MRPSO does. Runtime comparison
between MRPSO and MRMCS is presented in Fig. 11.
Similarly, thanks to two reasons stated above, MRMCS
uses much shorter runtime than MRPSO under various

numbers of VM in use. The total runtime used by MRMCS
also decreases when the number of VM in use increases.

i —e— MRMCS

= St iR
510! - «--MRPSO ||
Q
&
5 o
2 ol
£ 10
S
o
"]
=
=
-

o)

107} ]
10° 10" 10° 10’ 10"

Number of objective function evaluations

Fig. 8. Performance of MRMCS and MRPSO on Griewank.
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Fig. 9. Runtime of MRMCS and MRPSO on Griewank.
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Fig. 10. Performance of MRMCS and MRPSO on Rastrigrin.
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5.3 Function Rosenbrock

The third evaluation function, Rosenbrock, is define as
d
fe(x) =Y [A=x) +100(x,., —x)’ ]

i=1
where in our experiment, dimension d is set as 30, x; is a
random variable, x;€[—100,+100], and i is their index from
1 to d. Fig. 12 compares the performance of MRMCS and
MRPSO for Rosenbrock. In this case, MRMCS and
MRPSO can find the minimum value of the same quality
after 3000 times iteration evolution. However, MRMCS
converges during the 500th iteration where MRPSO
converges during the 1000th iteration. Therefore, MRMCS
is more efficient than MRPSO in finding the optimality for
Rosenbrock.

Fig. 13 compares the runtime of MRMCS and MRPSO
on Rosenbrock using 1, 2, 4, and 8 virtual machines,
respectively. As you can see, MRMCS run faster than
MRPSO. Again, MRPSO uses 2 to 3 times of runtime than
MRMCS does, demonstrating that MCS is more suitable to
be parallelized on the MapReduce architecture than PSO
for the function Rosenbrock.

5.4 Function Sphere
The expression of the Sphere function is
d
Io(x)=2x"
i=1

where in our experiment, dimension d is set as 30, x; is a
random variable, x;€[-5.12, +5.12], and i is their index

from 1 to d. Fig. 14 compares the performance of MRMCS
and MRPSO for Sphere. Unlike previous cases, in the
middle of the search process, MRPSO once found a better
value than MRMCS during around the 400th iteration.
However, it cannot make any advancement for the rest of
2600 iterations. MRMCS, on the other hand, keeps
polishing it solution. Before the end of our experiment, we
have not yet concluded if the optimal value found by
MRMCS is the true minimum value.

As to the runtime, Fig. 15 compares it of MRMCS with
MRPSO to the Sphere function. Following the same trend
as previous evaluations, MRMCS runs faster than MRPSO
does, maintaining a 3 times speed-up.

5.5 Application of Spring Design

Tensional and/or compressional springs are used widely
in engineering. There are three design variables in the
spring design problem: the wire diameter w, the mean coil
diameter d, and the length (or number of coils) L. The goal
is to minimize the weight of the spring with the limitation
of the maximum shear stress, minimum deflection, and
geometrical limits. The details of spring design problem are
described in [11] and [12].

This overall problem can be formulated as
min f, (x)=(L+2)w’d
subject to
g (x)=1-(aL)/(74785w* ) <0
g (x)= 1—(140.45w)/(d2L) <0
g (x)=2(w+d)/3-1<0
g, (x) =[d(4d —w) ]/ W (12566d ~w) |+1/(5108%*)~1<0
where

0.05<w<2.0,025<d<13,20<L<15.0.

Fig. 16 and Fig. 17 show the comparison in terms of
performance and runtime of MRMCS and MRPSO,
respectively, on the spring design application. It is clear
that MRMCS and MRPSO can find the same optimal value
but MRMCS runs much faster than MRPSO does,
maintaining a 4-times speed-up.

value of Sphere function
8

10° 10! 10" 10° 10"
Number of objective function evaluations

Fig. 14. Performance of MRMCS and MRPSO on Sphere.
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Fig. 15. Runtime of MRMCS and MRPSO on Sphere.

5.6 Application of Welded-Beam Design

The Welded-beam design problem comes from the
standard  test problem for constrained design
optimization!'*""*!, There are four design variables in this
problem: the width w and length L of the welded area, the
depth d and thickness % of the main beam. The objective is
to minimize the overall fabrication cost, under the
appropriate constraints of the shear stress 7, bending stress
o, buckling load P(x), and maximum end deflection J.

This overall problem can be formulated as:

min f;. =1.1047w*L+0.04811dh(14.0 + L)
subject to
g (x) =17(x)—-13000<0
g, (x) =0o(x)—30000<0
g (x)=w-h<0
2, (x)=0.10471w" +0.04811hd (14+ L) -5<0
25(x)=0.0125-w<0
g (x)=6(x)-025<0
g; (x) =6000—-P(x)<0
where
& (x) = 504000/ (hd®)
8(x)=2.1951/(1d)
P(x)=64746.022(1-0.0282346d)dh’
r(x)= \/az +afL/D+ B’
o = 6000/ (V2L )
p=0D/J
0=6000(14+L/2)
D=05(+(w+d)’

J=N2wL| 22+ (w+d) 2]

Fig. 18 and Fig. 19 show the performance and runtime
comparisons of MRMCS and MRPSO on the welded-beam
design application, respectively. Similarly as the spring
design optimization, MRMCS and MRPSO achieve the

solutions of comparable quality whereas MRMCS only
takes a quarter of runtime than MRPSO does.
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Fig. 16. Performance of MRMCS and MRPSO on spring design.
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Fig. 18. Performance of MRMCS and MRPSO on welded-beam
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6. Conclusions

Meta-heuristics as a search strategy for optimization
has been extensively studied and applied to solve many
engineering problems. Most of them suffer from long
runtime and thus parallelizing them to improve their
efficiency is a thriving topic in research. Recently, PSO has

been successfully implemented on the MapReduce platform.

Therefore, in this paper, we parallelize MCS on a
MapReduce platform and propose MRMCS. Problems of
job partitioning and information exchange are solved by
modification on the MapReuce architecture and 3-egg-tuple
transformation. As a result, MRMCS outperforms MRPSO
on four evaluation functions and two engineering design
optimization applications. Experimental results show
MRMCS has better convergence than MRPSO does.
Moreover, MRMCS also brings about two to four times
speed-ups for four evaluation functions and engineering
design applications, demonstrating superior efficiency after
parallelization on the MapReduce architecture (Hadoop).

References

[17 J. Kennedy and R. Eberhart, “Particle swarm optimization,”
in Proc. of IEEE Int. Conf. on Neural Networks, Perth, pp.
19421948, 1995.

[2] X. Yang and S. Deb, “Cuckoo search via Lévy flights,” in
Proc. of IEEE World Congress on Nature & Biologically
Inspired Computing, Coimbatore, 2009, pp. 210-214.

[3] S. Walton, O. Hassan, K. Morgan, and M. Brown, “Modified
cuckoo search: a new gradient free optimisation algorithm,”
Chaos, Solitons & Fractals, vol. 44, pp. 710-718, Sep.
2011.

[4] A. McNabb, C. Monson, and K. Seppi, “Parallel PSO using
mapreduce,” in Proc. of IEEE Congress on Evolutionary
Computation, Singapore, 2007, pp. 7-14.

[S] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” Communications of the ACM,
vol. 51, no. 1, pp. 107113, 2008.

[6] W. Zhao, H. Ma, and Q. He, “Parallel k-means clustering
based on mapreduce,” Lecture Notes in Computer Science
vol. 5931, 2009, pp. 674-679.

[71 L
simulated annealing,” Journal of Computational Physics,
vol. 226, no. 2, pp. 1830-1844, 2007.

[8] Hadoop: The Definitive Guide, O’Reilly Media, 2012.

[91 R.L.Iman, “Latin hypercube sampling,” in Encyclopedia of
Statistical Science Update, New York: Wiley, 1999, pp.
408-411.

[10] X. Yang and S. Deb, “Engineering optimisation by cuckoo
search,” Int. Journal of Mathematical Modelling and
Numerical Optimisation, vol. 1, no. 4, pp. 330-343, 2010.

[11] J. S. Arora, Introduction to Optimum Design, Waltham:
Academic Press, 2004.

[12] L. Cagnina, S. Esquivel, and C. Coello, “Solving
engineering optimization problems with the simple
constrained particle swarm optimizer,” Informatica, vol. 32,

Pavlyukevich, “Lévy flights, non-local search and

no. 3, pp. 319-326, 2008.

[13] K. Ragsdell and D. Phillips, “Optimal design of a class of
welded structures using geometric programming,” ASME
Journal of Engineering for Industries, vol. 98, no. 3, pp.
1021-1025, 1976

Chia-Yu Lin received the B.S. and M.S.
degrees from National Chiao Tung University
(NCTU), Hsinchu in 2010 and 2012,
respectively, all in computer science. She is
currently working toward the Ph.D. degree
with the Institute of Communications
Engineering, NCTU. Her current research
interests include VM resource estimation and load balancing in
cloud data centers.

-~

Yuan-Ming Pai was born in Taiwan in 1991.
He is currently pursuing the B.S. degree with
the Department of Electrical and Computer
& Engineering, NCTU. His research interests

include parallel computing and cloud

Kun-Hung Tsai was born in Taiwan in 1990.
He is currently pursuing his B.S. degree with
the Department of Electrical and Computer
Engineering, NCTU. His research interests
include parallel computing and cloud
computing.

Charles H.-P. Wen received his Ph.D. degree
in VLSI verification and test from University
of California, Santa Barbara in 2007. He is an
associate professor at NCTU and a specialist
in computer engineering. Over the past few
years, his work has been focused on applying
data mining and machine learning techniques

b i & S i

on SoC design (especially on statistical soft error rates and circuit
diagnosability in nanometer technologies) and cloud computing
(especially on performance analysis and architecture design of
large-scale data centers).

Li-Chun Wang received the B.S. degree from
NCTU in 1986, the M.S. degree from National
Taiwan University in 1988, and the Ms.Sci.
and Ph.D. degrees from the Georgia Institute
of Technology, Atlanta in 1995 and 1996,
respectively, all in electrical engineering. From
\ 1990 to 1992, he was with the Tele-
communications Laboratories of the Ministry of Transportations
and Communications in Taiwan (currently the Telecom Labs of
Chunghwa Telecom Co.). Since August 2000, he has been an
associate professor with the Department of Communication
Engineering, NCTU. His current research interests include
adaptive/cognitive wireless networks, radio network resource
management, cross-layer optimization, and cooperative wireless
communication networks.





<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




