
JOURNAL OF ELECTRONIC SCIENCE AND TECHNOLOGY, VOL. 11, NO. 2, JUNE 2013

115

Abstract⎯Meta-heuristics typically takes long time

to search optimality from huge amounts of data samples
for applications like communication, medicine, and civil
engineering. Therefore, parallelizing meta-heuristics to
massively reduce runtime is one hot topic in related
research. In this paper, we propose a MapReduce
modified cuckoo search (MRMCS), an efficient modified
cuckoo search (MCS) implementation on a MapReduce
architecture — Hadoop. MapReduce particle swarm
optimization (MRPSO) from a previous work is also
implemented for comparison. Four evaluation functions
and two engineering design problems are used to
conduct experiments. As a result, MRMCS shows better
convergence in obtaining optimality than MRPSO with
two to four times speed-up.

Index Terms⎯Cuckoo search, MapReduce,

meta-heuristics, particle swarm optimization.

1. Introduction
Meta-heuristics such as particle swarm optimization

(PSO) and cuckoo search (CS) are widely used in
engineering optimization. PSO was inspired by foraging
social behavior of birds and fishes[1]. At the beginning, the
species have no idea about the food location and thus
search according to their experience and intuition. Once an
individual finds the food, it informs other individuals of
such location. Accordingly, others adjust their flight.
Bird/fish foraging behavior is a concept of socially mutual
influence, which guides all individuals to move toward the
optimum. PSO is prevailing because it is simple, requires
little tuning, and is found effective for problems of
wide-range solutions.

Moreover, cuckoo search (CS), an optimization
algorithm was proposed in 2009[2]. The cuckoo eggs mimic

 Manuscript received October 31, 2012; revised December 25, 2012.
C.-Y. Lin is with the Institute of Communications Engineering, National

Chiao Tung University, Hsinchu (Corresponding author e-mail:
sallylin0121@gmail.com)

Y.-M. Pai, K.-H. Tsai, C. H.-P. Wen, and L.-C. Wang are with the
Department of Electrical and Computer Engineering, National Chiao Tung
University, Hsinchu (e-mail: paiming0728@hotmail.com; moonape1226@
gmail.com; opwen@g2.nctu.edu; lichun@g2.nctu. edu.tw).

Digital Object Identifier: 10.3969/j.issn.1674-862X.2013.02.002

the eggs of other host birds to stay in their nests. This
phenomenon leads to the evolution of egg appearance
towards optimal disguise. In order to improve the
performance of cuckoo search, a modified cuckoo search
(MCS) was later proposed in 2011[3] and successfully
demonstrated good performance. Based on [3], we
parallelize MCS to propose a MapReduce modified cuckoo
search (MRMCS) in this work. As a result, our MRMCS
outperforms previously proposed MapReduce particle
swarm optimization (MRPSO)[4] on all evaluation functions
and two engineering design problems in terms of both
convergence of optimality and runtime.

MapReduce[5] is a widely-used parallel programming
model in cloud platforms and consists of mapping and
reducing functions inspired by dividing and conquering.
Mapping and reducing functions execute the computation
in parallel, combine the intermediate result, and output the
final result. Independent data are suitable for the
MapReduce computing. For example, in the k-means
algorithm, each data node computes the distance from itself
to all central nodes and thus the work[6] proposed its
parallelized version on MapReduce in 2009. Similarly,
particle swarm optimization (PSO) addresses that each data
node computes its own best value by itself and thus were
also successfully parallelized on a MapReduce
framework[4].

Since PSO can be successfully parallelized into
MRPSO[4], we are motivated to parallelize MCS on a
MapReduce architecture and compare the performance of
MRMCS with that of MRPSO. However, two critical issues
are worth pointing out when parallelizing MCS on a
MapReduce architecture: 1) job partitioning (i.e. which jobs
go to the mappers and which jobs go to the reducers) needs
to be decided in MRMCS; 2) the support of information
exchange is critical during evolution in MCS. However, an
original MapReduce architecture like Hadoop cannot
support this and thus need proper modification. Therefore,
this work is motivated to deal with these two problems to
enable good parallelism on MRMCS.

The rest of the paper is organized as follows. Section 2
introduces the fundamentals of MCS, and Section 3
describes the MapReduce architecture in detail. MRMCS is
proposed and elaborated in Section 4. Section 5 shows
several optimization applications with MRMCS and

Parallelizing Modified Cuckoo Search on
MapReduce Architecture

Chia-Yu Lin, Yuan-Ming Pai, Kun-Hung Tsai, Charles H.-P. Wen, and Li-Chun Wang

JOURNAL OF ELECTRONIC SCIENCE AND TECHNOLOGY, VOL. 11, NO. 2, JUNE 2013

116

compares their performance and runtime with MRPSO.
Finally, Section 6 concludes the paper.

2. Modified Cuckoo Search
CS was proposed for optimization problems by Yang et

al. in 2009[2]. Later, in order to improve the performance of
the baseline CS, Walton et al. in 2011 added more
perturbations to the generation of population and thus
proposed MCS in [3]. In this work, we further parallelize
MCS on a MapReduce architecture and propose MRMCS.

The original CS was inspired by the behavior of cuckoo
laying eggs. Cuckoos tend to lay eggs in the nests of other
host birds. If the host birds can differentiate cuckoo eggs
from their own eggs, they may throw away cuckoo eggs or
all eggs in the nest. This leads to the evolution of cuckoo
eggs mimicking the eggs of local host birds. Yang et al.[2]
conducted the three following rules from the behavior of
cuckoo laying eggs for optimization:

• Each egg laid by one cuckoo is a set of solution
coordinates and is dumped in a random nest at a time.

• A fraction of the nests containing the eggs (solutions)
with best fitness will carry over to the next generation.

• The number of nests is fixed and there is a probability
that a host can discover such alien egg. If this happens, the
host can either discard the egg or the nest, resulting in
building a new nest in a new location.

Besides the three rules stated above, the use of Lévy
flight[7] for both the local and global search is another
important component in CS. The Lévy flight, also
frequently used in other search algorithms[7], is a random
walk in which the step lengths have a probability
distribution with heavy tails. The egg generated by Lévy
flight compares its fitness value with that of the current egg.
If the fitness value of the new egg is better than the current
one, the new egg takes place of the position. The random
size of Lévy flight is controlled by a constant step size α
where α can be adjusted according to the problem size of
target applications. The fraction of nests to be abandoned is
the only one parameter which is needed to be adjusted
during the CS evolution.

In order to speed up the convergence of evolution,
Walton et al.[3] proposed MCS. There are two modifications
over CS. The first change is that the step size 1α is no
longer a constant and can decrease as the number of
generation increases. Adjusting 1α dynamically leads to
faster convergence on optimality. At each generation, a new
step size of Lévy flight is

1 A Gα =

where A is initialized as 1 and G is the generation number.
This setting is used for deciding the fraction of nests to be
abandoned.

The second change is the information exchange

between eggs. In MCS, eggs with the best fitness values are
put in the top-egg group. Every top egg will be paired with
a randomly-picked egg. During the selection process, if the
same egg is picked, a new egg is generated with the step
size

2
2 A Gα = .

Otherwise, a new egg is generated from two top eggs using
the golden ratio

()1 5 2φ = + .

The fraction of nests to be abandoned and the fraction of
nests to generate next top eggs are two adjustable
parameters in MCS. Algorithm 1 shows the details of MCS
as follows.
Algorithm 1. MCS Algorithm in [3]
1: A←MaxLévyStepSize
2: φ ←GoldenRatio
3: Initialize a population of n host nests ix ,(i=1,2,⋅⋅⋅,n)
4: for all xi do
5: Calculate fitness ()i iF f x=
6: end for
7: Generation number G←1
8: while

NumberObjectiveEvaluations<MaxNumberEvaluations
do

9: G←G+1
10: Sorts nests by order of fitness
11: for all nests to be abandoned do
12: Calculate position xi
13: Calculate Lévy flight step size 1 A Gα ←
14: Perform Lévy flight from xi to generate new egg

xk
15: ix ← kx
16: ()i iF f x←
17: end for
18: for all of the top nests do
19: Calculate position xi
20: Pick another nest from the top nests at random xj
21: if xi=xj then
22: Calculate Lévy flight step size

2
2 /A Gα ←

23: Perform Lévy flight from xi to generate
new egg xk

24: ()k kF f x=
25: Choose a random nest l from all nests
26: if k lF F> then
27: l kx x←
28: l kF F←
29: end if
30: else

LIN et al.: Parallelizing Modified Cuckoo Search on MapReduce Architecture

117

31: i jdx x x φ= −

32: Move distance dx from the worst nest to the
best nest to find xi

33: ()k kF f x=
34: Choose a random nest l from all nests
35: if k lF F> then
36: l kx x←
37: l kF F←
38: end if
39: end if
40: end for
41: end while

3. MapReduce Architecture
MapReduce[5] is a patented software framework

introduced by Google to support distributed computing on
large data volumes on clusters of computers. MapReduce
can also be considered as a parallel programming model
and it aims at processing large datasets. A MapReduce
framework consists of mapping and reducing functions
which are inspired by dividing and conquering. The map
function, which is also known as the mapper, parallelizes
the computation on large-scale clusters of machines. The
reduce function, which is also called the reducer, collects
the intermediate results from the mappers and then outputs
the final result. In the MapReduce architecture, all data
items are represented as the form of keys paired with
associated values. For example, in a program that counts
the frequency of occurrences for words, the key is the word
itself and the value is its frequency of occurrences.
Applications with independent input data or computation
are suitable to be parallelized on the MapReduce
framework. For example, for PSO, each data node can
finish computing its own best value without acquiring
information from other nodes. Therefore, PSO is a good
candidate that can be parallelized on the MapReduce
framework to save runtime greatly. Such idea was termed
MRPSO and realized in [4].

3.1 Map Function (Mapper)
A MapReduce job usually splits the input data set into

many independent chunks which are processed by the map
function in a completely parallel manner. The map function
takes a set of (key, value) pairs and generates a set of
intermediate (key, value) pairs by applying a designated
function to all these pairs, that is,

Map: (k1, v1) → list(k2, v2).

3.2 Reduce Function (Reducer)
Before running the reduce function, the shuffle and

sort functions are applied to the outputs from the map

function. Then the new outputs become the input to the
reduce function. The reduce function merges all pairs with
the same key using a reduction function:

Reduce: (k2, list(v2)) → list(k3, v3).

The input type and output type of a MapReduce job are
illustrated in Fig. 1, respectively. The data which is a (key,
value) pair is the input to the mapper. The mapper extracts
meaningful information from each record independently.
The output of the mapper is sorted and combined according
to the key and passed to the reducer where the reducer
performs aggregation, summarization, filtering, or
transformation of data and writes the final result.

3.3 MapReduce Example
An example of the overall Map/Reduce framework is

shown in Fig. 2. This is a program named “WordCount”
used for counting the frequency of occurrences for different
words. The input data is partitioned into several files and
sent to different mappers to count occurrences of one target
word. The input key is ignored but arbitrarily set to be the
line number for the input value. The output key is the word
under interest, and the output value is its counts. The
shuffle and sort functions are performed to combine key
values output from the mappers. Finally, the reducer merges
the count value of each word and writes out the final result
(i.e. the frequency of occurrences).

3.4 MapReduce Implementation
Google has published its MapReduce implementation

in [5], but has not yet released the system to the public.
Thus, the Apache Lucene project developed Hadoop, a
Java-based platform, as an open-source MapReduce
implementation. Hadoop[8] was derived from Google’s
MapReduce architecture and the Google file system (GFS).
Data-intensive and distributed applications can work on
Hadoop which can support up to thousands of computing
nodes. In this work, we referred to [4] and implemented
PSO and MCS into MRPSO and MRMCS, respectively, on
the Hadoop platform.

(input) <k1, v1> → map → combine → reduce → <k3, v3> (output)

Fig. 1. Input and output types of a MapReduce job.

Fig. 2. Example of a MapReduce framework.

1

Fi

Fi

el
so
pa
m
S
an
in
or
tr
eg

3-
co
de
ra
in
A
pe
ne
de
of

118

ig. 3. Overall fl

ig. 4. One of th

Parallelizin
laborated in th
olved. First,
artitioning. In

mappers and
econd, inform
nd computing
n the MapRed
riginally. T
ransformation
ggs.

Fig. 3 sh
-egg-tuple tra
omposed of o
enotes the in
andomly-picke
ndex of the n

After the 3-e
erform gold-r
ew egg. Later
escendant sam
f three steps s

lowchart of MR

he map function

4. M
ng MCS on
his section. Tw
we have to

n other words
reducers nee

mation is enab
g nodes need t
duce architec
Therefore,

to facilitate

hows the ove
ansformation
original sampl
ndex of curr
ed egg to be

nest for puttin
egg-tuple tran
ratio crossove
r, each reduce

mple among a
stated above ar

3-Egg-Tuple Ge
(i, j, k)

Mapper
Perform Crossove
Flight to generate

Reducer
Choose the be

Set of New E

Eggs Set

RMCS.

n in MRMCS.

MRMCS

a MapReduc
wo major prob

determine a
s, we need to
ed to take c
bled to excha
to communica
ture, which w
we propo

exchange inf

erall flow o
function outp
les (i, j, k) for
rent egg, j is
paired with e

ng the new eg
nsformation
er or Lévy fli
er chooses th
ll candidates o
re further disc

eneration

r:
er or Levy
e new eggs

r:
est eggs

Eggs

t

JOURNA

ce architectur
blems remain
a strategy for
o decide jobs
care, respecti
ange in MRM
ate with each o
was not suppo
ose 3-egg-
formation betw

of MRMCS.
puts a new sa
r mappers, wh
s the index
egg i, and k i
gg after evolu
process, map
ight to genera
e best eggs a
of its own. De
cussed as follo

AL OF ELECTRO

re is
to be
r job
s that
ively.
MCS,
other
orted
tuple
ween

The
mple

here i
of a

is the
ution.
ppers
ate a

as the
etails
ows.

4.1
I

and
grou
top-
cros
two
coin
new
diffe
com
func
of 3
egg
putti
j, k)

4.2
O

Map
whic
The
jobs
Sinc
gene
assig
3-eg
map
thre

from
at th
egg
and
show

the
the
oper
is g
exam

Fig

ONIC SCIENCE

3-Egg-Tuple
In MCS, eggs
bad-egg gro

up and the o
egg group are

ssover operatio
eggs are p

ncidently, the
w egg. Since
erent mapper

mbines inform
ction is called
3-egg-tuple tra
index, random
ing the new e
is sent to a m

MRMCS Ma
One key ch
pReduce platf
ch jobs go to
general rule i

s and reducers
ce operations
eration are ind
gned to pe
gg-tuples are
ppers and each
e cases.
·Case 1: Th

m the same ne
he nest ni for
xj are further
generate a ne

ws an example
·Case 2: Th
same nest. Th
nest ni for

ration is perfo
enerated to b
mple for Case

g. 5. Case two o

i=j

AND TECHNOL

Transformat
s are separated
oups. The egg
other one ran
e first paired
on over the p
picked from
Lévy flight is
the egg infor
rs in the M

mation from th
d 3-egg-tuple
ansformation
mly-picked eg
gg) denoted a

mapper for gen

appers
hallenge of
form is job par
o mappers and
is that mapper
s are responsib
of crossover

dependent am
erform the
 the input
h new-egg ge

he top egg xi a
st. The egg xi
the next gen

r used to perf
ew egg to be
e for this case
e top egg xi an
he egg xi is fi

the next ge
ormed on the
be placed at t
 2.

of the mapper fu

LOGY, VOL. 11,

tion
d according to
g picked from

ndomly picked
and then MC

pair to generat
the same

s used instead
rmation is no

MapReduce ar
hree eggs into

transformatio
function are

gg index, targe
as (i, j, k). Eac
nerating a new

parallelizing
rtitioning. We
d which jobs
rs take charge
ble for combin
and Lévy flig

mong all sampl
new-egg ge
to new-egg

eneration can

and top egg x
is first duplic

neration. Then
form the cros
placed at the

e.
and top egg xj
first duplicated
eneration. Th
egg xi instead
the nest nk. F

unction in MRM

NO. 2, JUNE 20

o top-egg grou
m one top-eg
d from anoth

CS performs t
te a new egg.
top-egg grou

d to generate t
ot preserved o
rchitecture, w
o one and su
on. The outpu
sets of (curre

et-nest index f
ch 3-egg-tuple

w egg.

g MCS on
e have to deci
go to reducer

e of independe
ning the resul
ght for new eg
les, mappers a
eneration. T

generation
be divided in

xj are not draw
cated and plac
n the egg xi an
sover operatio

e nest nk. Fig.

are drawn fro
d and placed
he Lévy flig
d and a new eg
Fig. 5 shows

MCS.

013

ups
gg

her
the

If
up
the
on
we

uch
uts
ent
for
e (i,

a
ide
rs.

ent
lts.
gg
are
he
in

nto

wn
ed
nd
on
. 4

om
at

ght
gg
an

LI

F

Fi

ba
at

4.

re
ne
an
ge
eg
ne
ge
th

op
re
A

2
3

 4
5

 6
 7

 9
10

IN et al.: Parallel

Fig. 6. Case thr

ig. 7. Example

·Case 3: T
ad egg xi dire
t nk=ni, as sho

.3 MRMCS R
Reducers a

esults from m
ext-generation
n example f
enerate new e
gg. Each redu
est and uses
eneration. Th
he next MRMC

Algorithms
perations inc
educer operati
lgorithm 2. M
1: A←MaxLé
2: φ ←Golden
3: ()if x ← T
4: definition:
5: input: (Las

S:{(1, ,jx x x

a random e
6: if Bad nest
7: Pick the
8: Calculat
9: Perform
0: ix ← kx

lizing Modified C

ree of the mapp

on the reduce f

The Lévy fligh
ectly and a new
own in Fig. 6.

Reducers
are responsibl

mappers. In M
n egg of the n
for the reduc
eggs, every n
ucer finds the

the egg wit
e results of re
CS generation
s 2 and 3 sum
cluding three
ions in MRMC

MRMCS on M
évyStepSize
nRatio
The fitness of

Mapper (key
st iteration Fit

kx),…,(, ,n jx x

gg, the nest fo
then
nest ni

te Lévy flight
Lévy flight fr

Cuckoo Search on

er function in M

function.

ht operation is
w egg is gene

le for combing
MRMCS, reduc

nests, respectiv
cer operation
est may conta
best value fro
th the best v
educers are us
n.
mmarize the

cases stated
CS.

Map

ix
y, value)
tness value, S)
, kx)}, a set of

or putting new

step size 1α ←

from xi to gene

n MapReduce Arc

MRMCS.

s performed o
erated to be pl

g the interme
cers determin
vely. Fig. 7 sh
n. After map
ain more than
om all eggs in
value as the
sed as the inp

details of ma
d above and

),
f (the current e

w egg).

A G←
erate new egg

chitecture

n the
laced

ediate
e the
hows
ppers
n one
n one

next
put to

apper
d the

egg,

xk

11:
12: e
13: i
14:
15:
16:

17:
18:

19:
20:
21:

22:

23:
24:
25: e
Algo
1: d
2: i

h
 3: f
 4:
 5:
 6: e

para
MC
old
MRM
of p
info
proc
func
inpu

H
oper
MC
map
func
the
fligh
from
of e
each
Vari
perf
secti

AM

 (i iF f x←
end if
if Top nest th
 Pick the ne
 Randomly
 if i j= th

 Calcula
 Perform

egg xk

 kF f=
 else
 dx x=

 Move d
nest to

 kF f=
 end if
end if
orithm 3. MRM
definition: Re
input: (Last it
host nest Fi, i=
for all Fi do
 Find the be
 Calculate f
end for

5. Eva
In our experi

allel versions
S generated th
egg with th

MCS was sim
performing M
rmation on

ceeded before
ctions. The ou
ut to the MapR
Hadoop carr
rations, each
S. In each M

pping function
ction (as in Al
new egg of e
ht operation in
m all candidat
each MapRedu
h nest. MRPS
ious evaluatio
formance and
ions.
Experiments
D FX(tm)-8

)

hen
est ni
pick another n

hen

ate Lévy fligh
m Lévy flight

()kf x

i jx x φ−

distance dx fro
find xk
()kf x

MCS on Redu
educer (key, v
teration fitnes
=1, 2,⋅⋅⋅, n)

est value xbest o
fitness iF f=

aluations
iments, we im
for MCS and
he new egg o
he better on
milar to the se
MCS sequenti
Hadoop, the
e executing

utput of 3-egg-
Reduce operat
ried out a
of which ev

MapReduce op
n (as in Alg
lgorithm 3). M
every nest thr
n parallel and
tes of every n
uce operation
O was also im

ons of MRMC
runtime were

were conduc
150 eight-co

nest nj from an

ht step size α
from xi to gen

om the worst

uce
valuelist):
ss value, a pop

of Fi
best()f x

and Appl
mplemented b

d PSO on Had
f every nest a
e serially. T
erial MCS. Ho
ially, in orde

3-egg-tuple
the mapping
-tuple transfor
tion.

sequence o
aluated a sin
peration, Had
orithm 2) an

Mappers in Ha
rough the cro
d reducers cho
nest, respectiv
n represented
mplemented a
CS and MRP
e compared in

cted on a com
ore processor

1

nother top nes

2
2 A Gα ←
nerate new

nest to the bes

pulation of n

lications
both serial an

doop. The seri
and replaced t
The process
owever, inste
er to exchan

transformatio
g and reducin
rmation was t

of MapRedu
ngle iteration
doop called t
nd the reducin
adoop generat
ossover or Lév
ose the best eg
vely. The outp

the best egg
according to [4
SO in terms
n the followin

mputer with
r and 12 G

119

st

st

nd
ial
the
of
ad

nge
on
ng
the

uce
of

the
ng
ted
vy
gg

put
of
4].
of
ng

an
GB

1

m
ph
al
u
in
by
ap
en
ex

5.

w
ra
1
M
fo
af
M

on
re
M
re
A
am
co
th
fi
sp
of
ru
ef

5.

w
ra
fr
M
m
th
ev
co
be
S
u

120

memory. Eigh
hysical mach
llocated to eac
sed as the M
nput dataset (
y Latin hype
pplications. H
ngineering
xperimental re

.1 Function G
The Griewan

(Af x

where in our e
andom variabl

to d. Fig. 8
MRPSO for G
ound the min
fter 3000 tim

MRMCS show
Fig. 9 com

n Griewank
espectively. A

MRPSO. Such
easons: 1) MR

As a result, in
mong all sa
omparison op
he dependent
le incurs mor
pecifically, in
f MRMCS de
untime reduct
fficiently than

.2 Function R
Define the

Bf

where in our e
andom variab
rom 1 to d. Th

MRPSO for Ra
minimum valu
hat found by
volution. Ag
onvergence t
etween MRP
imilarly, than
ses much sh

ht virtual mac
hine. A 10 G
ch VM. Hado

MapReduce sy
(containing 10
ercube sampli
Here four e
optimization
esults are pres

Griewank
nk function ca

) ()1 4000
i

x = ∑

experiment, d
le, xi∈[−600, +
compares the

Griewank. As a
nimum values
es of iteration

ws a faster conv
mpares the run

using 1, 2,
As you can
h phenomeno

RPSO in [4] d
n each iteratio
amples requir
erations. 2) M
list as its inp

re processing
Fig. 9, we ca

ecreases when
tion is not lin

n MRPSO doe

Rastrigrin
e second evalu

() 10
d

i
x d

=

= + ∑

experiment, d
ble, xi∈[−5.12
he performan
astrigin is sho
ue found by M
y MRPSO a
gain, MRM
than MRPSO
SO and MRM

nks to two re
horter runtime

chines (VMs)
disk and a 1

oop version 0.2
ystem for all
000 data node
ing[9] with re
evaluation fu

applications
sented as follo

an be expresse

2

1 1
cos

d d

i
i

x
= =

−∑ ∏

imension d is
+600], and i i
e performance
a result, MRM

s at the scale
n evolution, d
vergence than

ntime of MRM
 4, and 8
see, MRMCS
on can be a
id not use fitn

on, searching
res more tim

MRPSO requir
put data. How
time to the to

an also observ
n VM increa
near, MRMC

es on Hadoop.

uation function

2

1
[10cos(2

d

ix
=

−∑

dimension d is
2, +5.12], and
ce comparison

own in Fig. 10
MRMCS is m
after 3000 ti

MCS demons
O does. Run
MCS is pres
easons stated
e than MRPS

JOURNA

 were run on
1 G memory
21 in Java 1.7
experiments.

es) was gene
espect to diff
unctions and
s[10] with
ows, respectiv

ed as

() 1ix i +

s set as 30, xi

is their index
e of MRMCS
MCS and MR

of 10−2 and
demonstrating
n MRPSO doe
MCS and MR
virtual mach
S run faster
attributed to

ness values as
the optimal v

me for addit
res an extra fil

wever, such a
otal runtime. M
ve that the run
ases. Although
CS still runs m

n—Rastrigrin

2)]ixπ

s set as 30, xi

d i is their i
n of MRMCS

0. Surprisingly
much smaller
imes of iter
strates a b
ntime compa
sented in Fig
d above, MRM
SO under va

AL OF ELECTRO

n the
were

7 was
The

rated
ferent

two
their

vely.

i is a
from

S and
RPSO

10−1
g that
es.
RPSO
hines,

than
two

keys.
value
tional
le for
large
More
ntime
h the
more

as

i is a
index
S and
y, the

than
ration
better
rison
. 11.
MCS

arious

num
also

Fig.

Fig.

Fig.

Fig.

ONIC SCIENCE

mbers of VM i
 decreases wh

8. Performance

9. Runtime of M

10. Performanc

11. Runtime of

AND TECHNOL

in use. The tot
hen the numbe

e of MRMCS an

MRMCS and M

ce of MRMCS

f MRMCS and M

LOGY, VOL. 11,

tal runtime us
er of VM in us

nd MRPSO on

MRPSO on Grie

and MRPSO on

MRPSO on Ra

NO. 2, JUNE 20

sed by MRMC
se increases.

Griewank.

ewank.

n Rastrigrin.

strigrin.

013

CS

LI

Fi

Fi

5.

w
ra
1
M
M
af
co
co
is
R

on
re
M
M
be
fo

5.

w
ra

IN et al.: Parallel

ig. 12. Perform

ig. 13. Runtime

.3 Function R

The third e

Cf

where in our e
andom variabl

to d. Fig. 12
MRPSO for
MRPSO can fi
fter 3000 tim
onverges dur
onverges duri
s more efficien

Rosenbrock.
Fig. 13 com

n Rosenbrock
espectively. A

MRPSO. Again
MRMCS does,

e parallelized
or the function

.4 Function S
The expres

where in our e
andom variab

lizing Modified C

mance of MRMC

e of MRMCS an

Rosenbrock

evaluation func

()
1

(1
d

i
x

=

⎡= −⎣∑
experiment, d
le, xi∈[−100, +

2 compares the
Rosenbrock.
find the minim
mes iteration
ring the 500
ing the 1000th
nt than MRPS

mpares the run
k using 1, 2
As you can
n, MRPSO us
, demonstratin

d on the Map
n Rosenbrock

Sphere
ssion of the Sp

(Df

experiment, d
ble, xi∈[−5.12

Cuckoo Search on

CS and MRPSO

nd MRPSO on

ction, Rosenb
2) 100(i ix x ++

imension d is
+100], and i i
e performanc

In this cas
mum value of
evolution. H
0th iteration
h iteration. Th
SO in finding

ntime of MRM
2, 4, and 8
see, MRMCS
ses 2 to 3 tim
ng that MCS i
pReduce archi
.

phere function

() 2

1
x

d

i
i

x
=

= ∑

imension d is
2, +5.12], and

n MapReduce Arc

O on Rosenbroc

Rosenbrock.

brock, is defin
2 2

1)ix+ ⎤− ⎦

s set as 30, xi

is their index
e of MRMCS
se, MRMCS
f the same qu
owever, MRM

where MR
herefore, MRM
the optimalit

MCS and MR
virtual mach

S run faster
es of runtime
is more suitab
itecture than

n is

s set as 30, xi

d i is their i

chitecture

ck.

e as

i is a
from

S and
and

uality
MCS

RPSO
MCS
ty for

RPSO
hines,

than
than

ble to
PSO

i is a
index

from
and
midd
valu
How
2600
poli
have
MRM

A
MRP
as p
does

5.5

in e
sprin
diam
is to
of t
geom
desc

subj

whe

F
perf
resp
that
but
main

Fig.

m 1 to d. Fig.
MRPSO for

dle of the sea
ue than MRM
wever, it cann
0 iterations.
shing it soluti
e not yet co
MCS is the tru
As to the runt
PSO to the S

previous evalu
s, maintaining

Application
Tensional and
engineering. T
ng design pro

meter d, and th
o minimize th
the maximum
metrical limits
cribed in [11]
This overall p

ect to

1g

2g

() (4 4g x d d= ⎡⎣
ere

0.05 w≤
Fig. 16 and F

formance and
pectively, on

MRMCS and
MRMCS ru

ntaining a 4-ti

14. Performanc

14 compares
r Sphere. Un
arch process,
MCS during
not make any

MRMCS, o
ion. Before th

oncluded if th
ue minimum v
time, Fig. 15 c
phere functio

uations, MRM
g a 3 times spe

of Spring De
d/or compress
There are th

oblem: the wir
he length (or

he weight of t
m shear stress
s. The details
and [12].

problem can b

()min Ef x =

() (31x d L= −

() (2 1 140x = −

()3 2(g x w=

) 3(12d w w⎡− ⎤⎦ ⎣

2.0, 0.25w ≤ ≤
Fig. 17 show
d runtime o
the spring de

d MRPSO can
uns much f
imes speed-up

ce of MRMCS

the performan
nlike previous
MRPSO once
around the 4
advancement

on the othe
he end of our
he optimal v
value.
compares it o

on. Following
MCS runs faste

eed-up.

sign
ional springs

hree design v
re diameter w
number of co

the spring wit
s, minimum
of spring desi

e formulated a

() 22L w d= +

) ()474785L w

) ()20.45w d L

) 3 1 0w d+ − ≤

2566) 1d w ⎤− +⎦

1.3, 2.0d≤ ≤ ≤
the comparis

of MRMCS
esign applicat
n find the sam
faster than
p.

and MRPSO on

1

nce of MRMC
s cases, in t
e found a bett
400th iteratio
t for the rest
r hand, kee
experiment, w

value found b

f MRMCS wi
the same tren

er than MRPS

are used wide
variables in t
w, the mean co
oils) L. The go
th the limitatio
deflection, an
ign problem a

as

) 0≤

) 0≤

0
 ()25108 1w − ≤

15.0.L≤ ≤
son in terms

and MRPS
tion. It is cle

me optimal val
MRPSO doe

n Sphere.

121

CS
the
ter
on.
of

eps
we
by

ith
nd

SO

ely
the
oil
oal
on
nd
are

0≤

of
O,
ear
ue
es,

1

Fi

5.

st
op
pr
de
to
ap
σ

su

w

co
de
de

122

ig. 15. Runtime

.6 Applicatio
The Weld

tandard tes
ptimization[12

roblem: the w
epth d and thi
o minimize
ppropriate con

σ, buckling loa
This overal

min f

ubject to

()4g x =

where

(P

Fig. 18 and
omparisons of
esign applica
esign optimiz

e of MRMCS an

on of Welded-
ed-beam des

st problem
],[13]. There ar

width w and le
ickness h of t
the overall

nstraints of th
ad P(x), and m
ll problem can

1.1047Ff w=

()1g x τ=

()2g x σ=

(3g x
20.10471w= +

()5 0g x =

()6g x δ=

()7 6g x =

()xσ =

()xδ =

() 64746.0x =

()xτ α=

6α =

β
60Q =

0.5D =

2J wL L⎡= ⎣

d Fig. 19 show
f MRMCS an
ation, respecti
zation, MRM

nd MRPSO on

-Beam Design
ign problem

for con
re four design
ength L of the
the main beam

fabrication
he shear stress

maximum end
n be formulate
2 0.04811L d+

() 13000xτ − ≤

() 30000xσ − ≤

) 0w h= − ≤

(0.04811hd+

.0125 0w− ≤

() 0.25 0xδ − ≤

6000 () 0P x− ≤

(2504000 hd

(32.1951 h d=

022(1 0.0282−

2 L Dαβα + +

()000 2wL

QD Jβ =

()000 14 2L+

()2L w d+ +

()2 2L w d+ +

w the perform
nd MRPSO on
ively. Simila

MCS and MR

JOURNA

Sphere.

n
comes from

nstrained de
n variables in
e welded area

m. The objecti
cost, under

s τ, bending s
deflection δ.

ed as:

(14.0)dh L+

0≤

0≤

)14 5 0L+ − ≤

0

0

)2

)
32346)d dh

2β+

)

)2

)2 2 .⎤
⎦

mance and run
n the welded-b
arly as the sp
RPSO achieve

AL OF ELECTRO

m the
esign
n this
a, the
ive is

the
stress

0

ntime
beam
pring
e the

solu
take

Fig.

Fig.

Fig.
desig

Fig.
desig

ONIC SCIENCE

utions of com
es a quarter of

16. Performanc

17. Runtime of

18. Performan
gn.

19. Runtime
gn.

AND TECHNOL

mparable qual
f runtime than

ce of MRMCS

f MRMCS and

nce of MRMCS

of MRMCS

LOGY, VOL. 11,

lity whereas
MRPSO does

and MRPSO on

MRPSO on spr

S and MRPSO

and MRPSO

NO. 2, JUNE 20

MRMCS on
s.

n spring design

ring design.

on welded-bea

on welded-bea

013

nly

.

am

am

LIN et al.: Parallelizing Modified Cuckoo Search on MapReduce Architecture

123

6. Conclusions
Meta-heuristics as a search strategy for optimization

has been extensively studied and applied to solve many
engineering problems. Most of them suffer from long
runtime and thus parallelizing them to improve their
efficiency is a thriving topic in research. Recently, PSO has
been successfully implemented on the MapReduce platform.
Therefore, in this paper, we parallelize MCS on a
MapReduce platform and propose MRMCS. Problems of
job partitioning and information exchange are solved by
modification on the MapReuce architecture and 3-egg-tuple
transformation. As a result, MRMCS outperforms MRPSO
on four evaluation functions and two engineering design
optimization applications. Experimental results show
MRMCS has better convergence than MRPSO does.
Moreover, MRMCS also brings about two to four times
speed-ups for four evaluation functions and engineering
design applications, demonstrating superior efficiency after
parallelization on the MapReduce architecture (Hadoop).

References
[1] J. Kennedy and R. Eberhart, “Particle swarm optimization,”

in Proc. of IEEE Int. Conf. on Neural Networks, Perth, pp.
1942–1948, 1995.

[2] X. Yang and S. Deb, “Cuckoo search via Lévy flights,” in
Proc. of IEEE World Congress on Nature & Biologically
Inspired Computing, Coimbatore, 2009, pp. 210–214.

[3] S. Walton, O. Hassan, K. Morgan, and M. Brown, “Modified
cuckoo search: a new gradient free optimisation algorithm,”
Chaos, Solitons & Fractals, vol. 44, pp. 710–718, Sep.
2011.

[4] A. McNabb, C. Monson, and K. Seppi, “Parallel PSO using
mapreduce,” in Proc. of IEEE Congress on Evolutionary
Computation, Singapore, 2007, pp. 7–14.

[5] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” Communications of the ACM,
vol. 51, no. 1, pp. 107–113, 2008.

[6] W. Zhao, H. Ma, and Q. He, “Parallel k-means clustering
based on mapreduce,” Lecture Notes in Computer Science
vol. 5931, 2009, pp. 674-679.

[7] I. Pavlyukevich, “Lévy flights, non-local search and
simulated annealing,” Journal of Computational Physics,
vol. 226, no. 2, pp. 1830–1844, 2007.

[8] Hadoop: The Definitive Guide, O’Reilly Media, 2012.
[9] R. L. Iman, “Latin hypercube sampling,” in Encyclopedia of

Statistical Science Update, New York: Wiley, 1999, pp.
408–411.

[10] X. Yang and S. Deb, “Engineering optimisation by cuckoo
search,” Int. Journal of Mathematical Modelling and
Numerical Optimisation, vol. 1, no. 4, pp. 330–343, 2010.

[11] J. S. Arora, Introduction to Optimum Design, Waltham:
Academic Press, 2004.

[12] L. Cagnina, S. Esquivel, and C. Coello, “Solving
engineering optimization problems with the simple
constrained particle swarm optimizer,” Informatica, vol. 32,

no. 3, pp. 319–326, 2008.
[13] K. Ragsdell and D. Phillips, “Optimal design of a class of

welded structures using geometric programming,” ASME
Journal of Engineering for Industries, vol. 98, no. 3, pp.
1021–1025, 1976

Chia-Yu Lin received the B.S. and M.S.
degrees from National Chiao Tung University
(NCTU), Hsinchu in 2010 and 2012,
respectively, all in computer science. She is
currently working toward the Ph.D. degree
with the Institute of Communications
Engineering, NCTU. Her current research

interests include VM resource estimation and load balancing in
cloud data centers.

Yuan-Ming Pai was born in Taiwan in 1991.
He is currently pursuing the B.S. degree with
the Department of Electrical and Computer
Engineering, NCTU. His research interests
include parallel computing and cloud
computing.

Kun-Hung Tsai was born in Taiwan in 1990.
He is currently pursuing his B.S. degree with
the Department of Electrical and Computer
Engineering, NCTU. His research interests
include parallel computing and cloud
computing.

Charles H.-P. Wen received his Ph.D. degree
in VLSI verification and test from University
of California, Santa Barbara in 2007. He is an
associate professor at NCTU and a specialist
in computer engineering. Over the past few
years, his work has been focused on applying
data mining and machine learning techniques

on SoC design (especially on statistical soft error rates and circuit
diagnosability in nanometer technologies) and cloud computing
(especially on performance analysis and architecture design of
large-scale data centers).

Li-Chun Wang received the B.S. degree from
NCTU in 1986, the M.S. degree from National
Taiwan University in 1988, and the Ms.Sci.
and Ph.D. degrees from the Georgia Institute
of Technology, Atlanta in 1995 and 1996,
respectively, all in electrical engineering. From
1990 to 1992, he was with the Tele-

communications Laboratories of the Ministry of Transportations
and Communications in Taiwan (currently the Telecom Labs of
Chunghwa Telecom Co.). Since August 2000, he has been an
associate professor with the Department of Communication
Engineering, NCTU. His current research interests include
adaptive/cognitive wireless networks, radio network resource
management, cross-layer optimization, and cooperative wireless
communication networks.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

