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Abstract⎯Meta-heuristics typically takes long time 

to search optimality from huge amounts of data samples 
for applications like communication, medicine, and civil 
engineering. Therefore, parallelizing meta-heuristics to 
massively reduce runtime is one hot topic in related 
research. In this paper, we propose a MapReduce 
modified cuckoo search (MRMCS), an efficient modified 
cuckoo search (MCS) implementation on a MapReduce 
architecture — Hadoop. MapReduce particle swarm 
optimization (MRPSO) from a previous work is also 
implemented for comparison. Four evaluation functions 
and two engineering design problems are used to 
conduct experiments. As a result, MRMCS shows better 
convergence in obtaining optimality than MRPSO with 
two to four times speed-up. 

  
Index Terms⎯Cuckoo search, MapReduce, 

meta-heuristics, particle swarm optimization. 

1. Introduction 
Meta-heuristics such as particle swarm optimization 

(PSO) and cuckoo search (CS) are widely used in 
engineering optimization. PSO was inspired by foraging 
social behavior of birds and fishes[1]. At the beginning, the 
species have no idea about the food location and thus 
search according to their experience and intuition. Once an 
individual finds the food, it informs other individuals of 
such location. Accordingly, others adjust their flight. 
Bird/fish foraging behavior is a concept of socially mutual 
influence, which guides all individuals to move toward the 
optimum. PSO is prevailing because it is simple, requires 
little tuning, and is found effective for problems of 
wide-range solutions.  

Moreover, cuckoo search (CS), an optimization 
algorithm was proposed in 2009[2]. The cuckoo eggs mimic 
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the eggs of other host birds to stay in their nests. This 
phenomenon leads to the evolution of egg appearance 
towards optimal disguise. In order to improve the 
performance of cuckoo search, a modified cuckoo search 
(MCS) was later proposed in 2011[3] and successfully 
demonstrated good performance. Based on [3], we 
parallelize MCS to propose a MapReduce modified cuckoo 
search (MRMCS) in this work. As a result, our MRMCS 
outperforms previously proposed MapReduce particle 
swarm optimization (MRPSO)[4] on all evaluation functions 
and two engineering design problems in terms of both 
convergence of optimality and runtime. 

MapReduce[5] is a widely-used parallel programming 
model in cloud platforms and consists of mapping and 
reducing functions inspired by dividing and conquering. 
Mapping and reducing functions execute the computation 
in parallel, combine the intermediate result, and output the 
final result. Independent data are suitable for the 
MapReduce computing. For example, in the k-means 
algorithm, each data node computes the distance from itself 
to all central nodes and thus the work[6] proposed its 
parallelized version on MapReduce in 2009. Similarly, 
particle swarm optimization (PSO) addresses that each data 
node computes its own best value by itself and thus were 
also successfully parallelized on a MapReduce 
framework[4].  

Since PSO can be successfully parallelized into 
MRPSO[4], we are motivated to parallelize MCS on a 
MapReduce architecture and compare the performance of 
MRMCS with that of MRPSO. However, two critical issues 
are worth pointing out when parallelizing MCS on a 
MapReduce architecture: 1) job partitioning (i.e. which jobs 
go to the mappers and which jobs go to the reducers) needs 
to be decided in MRMCS; 2) the support of information 
exchange is critical during evolution in MCS. However, an 
original MapReduce architecture like Hadoop cannot 
support this and thus need proper modification. Therefore, 
this work is motivated to deal with these two problems to 
enable good parallelism on MRMCS. 

The rest of the paper is organized as follows. Section 2 
introduces the fundamentals of MCS, and Section 3 
describes the MapReduce architecture in detail. MRMCS is 
proposed and elaborated in Section 4. Section 5 shows 
several optimization applications with MRMCS and 
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compares their performance and runtime with MRPSO. 
Finally, Section 6 concludes the paper.  

2. Modified Cuckoo Search 
CS was proposed for optimization problems by Yang et 

al. in 2009[2]. Later, in order to improve the performance of 
the baseline CS, Walton et al. in 2011 added more 
perturbations to the generation of population and thus 
proposed MCS in [3]. In this work, we further parallelize 
MCS on a MapReduce architecture and propose MRMCS. 

The original CS was inspired by the behavior of cuckoo 
laying eggs. Cuckoos tend to lay eggs in the nests of other 
host birds. If the host birds can differentiate cuckoo eggs 
from their own eggs, they may throw away cuckoo eggs or 
all eggs in the nest. This leads to the evolution of cuckoo 
eggs mimicking the eggs of local host birds. Yang et al.[2] 
conducted the three following rules from the behavior of 
cuckoo laying eggs for optimization: 

• Each egg laid by one cuckoo is a set of solution 
coordinates and is dumped in a random nest at a time. 

• A fraction of the nests containing the eggs (solutions) 
with best fitness will carry over to the next generation. 

• The number of nests is fixed and there is a probability 
that a host can discover such alien egg. If this happens, the 
host can either discard the egg or the nest, resulting in 
building a new nest in a new location. 

Besides the three rules stated above, the use of Lévy 
flight[7] for both the local and global search is another 
important component in CS. The Lévy flight, also 
frequently used in other search algorithms[7], is a random 
walk in which the step lengths have a probability 
distribution with heavy tails. The egg generated by Lévy 
flight compares its fitness value with that of the current egg. 
If the fitness value of the new egg is better than the current 
one, the new egg takes place of the position. The random 
size of Lévy flight is controlled by a constant step size α 
where α can be adjusted according to the problem size of 
target applications. The fraction of nests to be abandoned is 
the only one parameter which is needed to be adjusted 
during the CS evolution. 

In order to speed up the convergence of evolution, 
Walton et al.[3] proposed MCS. There are two modifications 
over CS. The first change is that the step size 1α  is no 
longer a constant and can decrease as the number of 
generation increases. Adjusting 1α  dynamically leads to 
faster convergence on optimality. At each generation, a new 
step size of Lévy flight is  

1 A Gα =  

where A is initialized as 1 and G is the generation number. 
This setting is used for deciding the fraction of nests to be 
abandoned.  

The second change is the information exchange 

between eggs. In MCS, eggs with the best fitness values are 
put in the top-egg group. Every top egg will be paired with 
a randomly-picked egg. During the selection process, if the 
same egg is picked, a new egg is generated with the step 
size 

2
2 A Gα = . 

Otherwise, a new egg is generated from two top eggs using 
the golden ratio  

( )1 5 2φ = + . 

The fraction of nests to be abandoned and the fraction of 
nests to generate next top eggs are two adjustable 
parameters in MCS. Algorithm 1 shows the details of MCS 
as follows. 
Algorithm 1. MCS Algorithm in [3] 
1: A←MaxLévyStepSize 
2: φ ←GoldenRatio 
3: Initialize a population of n host nests ix ,(i=1,2,⋅⋅⋅,n) 
4: for all xi do 
5: Calculate fitness ( )i iF f x=  
6: end for 
7: Generation number G←1 
8: while 

NumberObjectiveEvaluations<MaxNumberEvaluations 
do 

9:  G←G+1 
10:  Sorts nests by order of fitness 
11:  for all nests to be abandoned do 
12:   Calculate position xi 
13:   Calculate Lévy flight step size 1 A Gα ←  
14:   Perform Lévy flight from xi to generate new egg 

xk  
15:   ix ← kx  
16:   ( )i iF f x←  
17:  end for 
18:  for all of the top nests do 
19:   Calculate position xi 
20:   Pick another nest from the top nests at random xj  
21:   if xi=xj then 
22:    Calculate Lévy flight step size 

2
2 /A Gα ←  

23:  Perform Lévy flight from xi to generate 
new egg xk 

24:       ( )k kF f x=  
25:    Choose a random nest l from all nests 
26:  if k lF F>  then 
27:   l kx x←  
28:   l kF F←  
29:  end if 
30:  else 
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31:   i jdx x x φ= −  

32: Move distance dx from the worst nest to the 
best nest to find xi  

33:   ( )k kF f x=  
34:   Choose a random nest l from all nests 
35:  if k lF F>  then 
36:   l kx x←  
37:   l kF F←  
38:   end if 
39:  end if 
40:    end for 
41: end while 

3. MapReduce Architecture 
MapReduce[5] is a patented software framework 

introduced by Google to support distributed computing on 
large data volumes on clusters of computers. MapReduce 
can also be considered as a parallel programming model 
and it aims at processing large datasets. A MapReduce 
framework consists of mapping and reducing functions 
which are inspired by dividing and conquering. The map 
function, which is also known as the mapper, parallelizes 
the computation on large-scale clusters of machines. The 
reduce function, which is also called the reducer, collects 
the intermediate results from the mappers and then outputs 
the final result. In the MapReduce architecture, all data 
items are represented as the form of keys paired with 
associated values. For example, in a program that counts 
the frequency of occurrences for words, the key is the word 
itself and the value is its frequency of occurrences. 
Applications with independent input data or computation 
are suitable to be parallelized on the MapReduce 
framework. For example, for PSO, each data node can 
finish computing its own best value without acquiring 
information from other nodes. Therefore, PSO is a good 
candidate that can be parallelized on the MapReduce 
framework to save runtime greatly. Such idea was termed 
MRPSO and realized in [4]. 

3.1 Map Function (Mapper)  
A MapReduce job usually splits the input data set into 

many independent chunks which are processed by the map 
function in a completely parallel manner. The map function 
takes a set of (key, value) pairs and generates a set of 
intermediate (key, value) pairs by applying a designated 
function to all these pairs, that is,   

Map: (k1, v1) → list(k2, v2). 

3.2 Reduce Function (Reducer) 
Before running the reduce function, the shuffle and 

sort functions are applied to the outputs from the map 

function. Then the new outputs become the input to the 
reduce function. The reduce function merges all pairs with 
the same key using a reduction function: 

Reduce: (k2, list(v2)) → list(k3, v3). 

The input type and output type of a MapReduce job are 
illustrated in Fig. 1, respectively. The data which is a (key, 
value) pair is the input to the mapper. The mapper extracts 
meaningful information from each record independently. 
The output of the mapper is sorted and combined according 
to the key and passed to the reducer where the reducer 
performs aggregation, summarization, filtering, or 
transformation of data and writes the final result.  

3.3 MapReduce Example 
An example of the overall Map/Reduce framework is 

shown in Fig. 2. This is a program named “WordCount” 
used for counting the frequency of occurrences for different 
words. The input data is partitioned into several files and 
sent to different mappers to count occurrences of one target 
word. The input key is ignored but arbitrarily set to be the 
line number for the input value. The output key is the word 
under interest, and the output value is its counts. The 
shuffle and sort functions are performed to combine key 
values output from the mappers. Finally, the reducer merges 
the count value of each word and writes out the final result 
(i.e. the frequency of occurrences). 

3.4 MapReduce Implementation 
Google has published its MapReduce implementation 

in [5], but has not yet released the system to the public. 
Thus, the Apache Lucene project developed Hadoop, a 
Java-based platform, as an open-source MapReduce 
implementation. Hadoop[8] was derived from Google’s 
MapReduce architecture and the Google file system (GFS). 
Data-intensive and distributed applications can work on 
Hadoop which can support up to thousands of computing 
nodes. In this work, we referred to [4] and implemented 
PSO and MCS into MRPSO and MRMCS, respectively, on 
the Hadoop platform. 

(input) <k1, v1> → map → combine → reduce → <k3, v3> (output) 

Fig. 1. Input and output types of a MapReduce job.  
 
 
 
 

 

 

 

 

 
Fig. 2. Example of a MapReduce framework. 
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6. Conclusions 
Meta-heuristics as a search strategy for optimization 

has been extensively studied and applied to solve many 
engineering problems. Most of them suffer from long 
runtime and thus parallelizing them to improve their 
efficiency is a thriving topic in research. Recently, PSO has 
been successfully implemented on the MapReduce platform. 
Therefore, in this paper, we parallelize MCS on a 
MapReduce platform and propose MRMCS. Problems of 
job partitioning and information exchange are solved by 
modification on the MapReuce architecture and 3-egg-tuple 
transformation. As a result, MRMCS outperforms MRPSO 
on four evaluation functions and two engineering design 
optimization applications. Experimental results show 
MRMCS has better convergence than MRPSO does. 
Moreover, MRMCS also brings about two to four times 
speed-ups for four evaluation functions and engineering 
design applications, demonstrating superior efficiency after 
parallelization on the MapReduce architecture (Hadoop). 
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