Xin Tong, Zhiming M. Wang. Ferroelectric Properties and Applications of Hybrid Organic-Inorganic Perovskites[J]. Journal of Electronic Science and Technology, 2017, 15(4): 326-332. DOI: 10.11989/JEST.1674-862X.70909051
Citation: Xin Tong, Zhiming M. Wang. Ferroelectric Properties and Applications of Hybrid Organic-Inorganic Perovskites[J]. Journal of Electronic Science and Technology, 2017, 15(4): 326-332. DOI: 10.11989/JEST.1674-862X.70909051

Ferroelectric Properties and Applications of Hybrid Organic-Inorganic Perovskites

doi: 10.11989/JEST.1674-862X.70909051
Funds: 

This work was supported by the National Higher Education Institution General Research and Development Funding under Grant No. ZYGX2012J034 and National Basic Research Program of China (973) under Grants No. 2015CB358600 and No. 2013CB933801

More Information
  • Author Bio:

    Xin Tong. His research interests include the nanostructured optoelectronic devices and multifunctional electronic devices.

  • Authors’ information: Zhiming M. Wang, e-mail:zhmwang@uestc.edu.cn
  • Received Date: 2017-09-04
  • Rev Recd Date: 2017-10-17
  • Publish Date: 2018-01-10
  • Hybrid organic-inorganic perovskites (e.g. CH3NH3PbI3) have attracted tremendous attention due to their promise for achieving next-generation cost-effective and high performance optoelectronic devices. These hybrid organic-inorganic perovskites possess excellent optical and electronic properties, including strong light absorption, high carrier abilities, optimized charge diffusion lengths, and reduced charge recombination etc., leading to their widespread applications in advanced solar energy technologies (e.g. high efficiency perovskite solar cells). However, there is still a lack of investigations regarding fundamental properties such as ferroelectricity in these perovskites. As conventional ferroelectric ceramics are prepared at high temperature and have no mechanically flexibility, low-temperature proceed and flexible perovskite ferroelectrics have become promising candidates and should be exploited for future flexible ferroelectric applications. Here, ferroelectric properties in hybrid organic-inorganic perovskites and several state-of-the-art perovskite ferroelectrics are reviewed. Novel ferroelectric applications of hybrid organic-inorganic perovskites are discussed as well, providing guideline for realizing future high performance and flexible ferroelectric devices.
  • [1]
    B. Saparov and D. B. Mitzi, Organic-inorganic perovskites: Structural versatility for functional materials design, Chem. Rev., vol. 116, no. 7, pp. 4558-4596, 2016.
    [1]
    Y. Zhao and K. Zhu, Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications, Chem. Soc. Rev., vol. 45, no. 3, pp. 655-689, 2016.
    [2]
    Q. Chen, N. De Marco, Y. Yang, et al., Under the spotlight: The organic-inorganic hybrid halide perovskite for optoelectronic applications, Nano Today, vol. 10, no. 3, pp. 355-396, 2015.
    [3]
    M. Liu, M. B. Johnston and H. J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature, vol. 501, no. 7467, pp. 395-398, 2013.
    [4]
    Z. Xiao, R. A. Kerner, L. Zhao, et al., Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites, Nat. Photonics, vol. 11, pp. 108-115, Apr. 2017.
    [5]
    L. Dou, Y.-M. Yang, J. You, et al., Solution-processed hybrid perovskite photodetectors with high detectivity, Nat. Commun., vol. 5, p. 5404, 2014, DOI: 10.1038/ncomms6404 [DOI:10.1038/ncomms6404]
    [6]
    X. Y. Chin, D. Cortecchia, J. Yin, A. Bruno, and C. Soci, Lead iodide perovskite light-emitting field-effect transistor, Nat. Commun., vol. 6, p. 7383, 2015, DOI: 10.1038/ncomms8383 [DOI:10.1038/ncomms8383]
    [7]
    X. Tong, F. Lin, J. Wu, and Z. M. Wang, High performance perovskite solar cells, Adv. Sci., vol. 3, no. 5, p. 1500201, 2016.
    [8]
    H. Zhou, Q. Chen, G. Li, et al., Interface engineering of highly efficient perovskite solar cells, Science, vol. 345, no. 6196, pp. 542-546, 2014.
    [9]
    N. J. Jeon, J. H. Noh, Y. C. Kim, W.-S. Yang, S. Ryu, and S. I. Seok, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nat. Mater., vol. 13, n. 9, pp. 897-903, 2014.
    [10]
    S. Chen, K. Roh, J. Lee, et al., A photonic crystal laser from solution based organo-lead iodide perovskite thin films, ACS Nano, vol. 10, no. 4, pp. 3959-3967, 2016.
    [11]
    H. Zhu, Y. Fu, F. Meng, et al., Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors, Nat. Mater., vol. 14, pp. 636-642, 2015, 10.1038/nmat4271.
    [12]
    Y. Wu, F. Xie, H. Chen, et al., Thermally stable MAPbI3 perovskite solar cells with efficiency of 19.19% and area over 1 cm2 achieved by additive engineering, Adv. Mater., vol. 29, no. 28, p. 1701073, 2017.
    [13]
    Z. Hu, M. Tian, B. Nysten, and A. M. Jonas, Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories, Nat. Mater., vol. 8, no. 1, pp. 62-67, 2009.
    [14]
    K. N. Kim, J. Chun, S. A. Chae, et al., Silk fibroin-based biodegradable piezoelectric composite nanogenerators using lead-free ferroelectric nanoparticles, Nano Energy, vol. 14, pp. 87-94, 2015, DOI: 10.1016/j.nanoen.2015.01.004 [DOI:10.1016/j.nanoen.2015.01.004]
    [15]
    R. C. G. Naber, C. Tanase, P. W. M. Blom, et al., High-performance solution-processed polymer ferroelectric field-effect transistors, Nat. Mater., vol. 4, no. 3, pp. 243-248, 2005.
    [16]
    J. Rdel, W. Jo, K. T. P. Seifert, E.-M. Anton, T. Granzow, and D. Damjanovic, Perspective on the development of lead-free piezoceramics, J. Am. Ceram. Soc., vol. 92, no. 6, pp. 1153-1177, 2009.
    [17]
    H. Yu, C.-C. Chung, N. Shewmon, et al., Flexible inorganic ferroelectric thin films for nonvolatile memory devices, Adv. Funct. Mater., vol. 27, no. 21, p. 1700461, 2017.
    [18]
    J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, and A. Walsh, Atomistic origins of high-performance in hybrid halide perovskite solar cells, Nano Lett., vol. 14, no. 5, pp. 2584-2590, 2014.
    [19]
    T. S. Sherkar and L. J. Koster, Can ferroelectric polarization explain the high performance of hybrid halide perovskite solar cells? Physical Chemistry Chemical Physics, vol. 18, no. 1, pp. 331-338, 2016.
    [20]
    Z. Fan, J. Xiao, K. Sun, et al., Ferroelectricity of CH3NH3PbI3 perovskite, J. Phys. Chem. Lett., vol. 6, no. 7, pp. 1155-1161, 2015.
    [21]
    J. Jiang, R. Pachter, Y. Yang, and L. Bellaiche, Dependence of the electronic and optical properties of methylammonium lead triiodide on ferroelectric polarization directions and domains: A first principles computational study, J. Phys. Chem. C, vol.121, no. 28, pp. 15375-15383, 2017.
    [22]
    S. Liu, F. Zheng, N. Z. Koocher, H. Takenaka, F. Wang, and A. M. Rappe, Ferroelectric domain wall induced band gap reduction and charge separation in organometal halide perovskites, J. Phys. Chem. Lett., vol. 6, no. 4, 693-699, 2015.
    [23]
    S. Liu, F. Zheng, I. Grinberg, and A. M. Rappe, Photoferroelectric and photopiezoelectric properties of organometal halide perovskites, J. Phys. Chem. Lett., vol. 7, no. 8, pp. 1460-1465, 2016.
    [24]
    F. Bi, S. Markov, R. Wang, et al., Enhanced photovoltaic properties induced by ferroelectric domain structures in organometallic halide perovskites, J. Phys. Chem. C, vol. 121, no. 21, pp. 11151-11158, 2017.
    [25]
    Y. Kutes, L. Ye, Y. Zhou, S. Pang, B. D. Huey, and N. P. Padture, Direct observation of ferroelectric domains in solution-processed CH3NH3PbI3 perovskite thin films, J. Phys. Chem. Lett., vol. 5, no. 19, pp. 3335-3339, 2014.
    [26]
    M. Coll, A. Gomez, E. Mas-Marza, et al., Polarization switching and light-enhanced piezoelectricity in lead halide perovskites, J. Phys. Chem. Lett., vol. 6, no. 8, pp. 1408-1413, 2015.
    [27]
    D. Seol, A. Jeong, M. H. Han, et al., Origin of hysteresis in CH3NH3PbI3 perovskite thin films, Adv. Funct. Mater., 2017, DOI: 10.1002/adfm.201701924 [DOI:10.1002/adfm.201701924]
    [28]
    P. Wang, J. Zhao, L. Wei, et al., Photo-induced ferroelectric switching in perovskite CH3NH3PbI3 films, Nanoscale, vol. 9, no. 11, pp. 3806-3817, 2017.
    [29]
    Y. Rakita, O. Bar-Elli, E. Meirzadeh, et al., Tetragonal CH3NH3PbI3 is ferroelectric, PNAS, vol. 114, no. 28, pp. E5504-E5512, 2017.
    [30]
    H. Rhm, T. Leonhard, M. J. Hoffmann, and A. Colsmann, Ferroelectric domains in methylammonium lead iodide perovskite thin-films, Energy Environ. Sci., vol. 10, no. 4, pp. 950-955, 2017.
    [31]
    Y. Zhang, Y. Liu, H. Y. Ye, et al., A molecular ferroelectric thin film of imidazolium perchlorate that shows superior electromechanical coupling, Angewandte Chemie (Intl. Editon), vol. 53, no. 20, pp. 5064-5068, 2014.
    [32]
    P. P. Shi, Y.-Y. Tang, P.-F. Li, et al., Symmetry breaking in molecular ferroelectrics, Chem. Soc. Rev., vol. 45, no. 14, pp. 3811-3827, 2016.
    [33]
    H.-Y. Ye, Y. Zhang, D.-W. Fu, and R.-G. Xiong, An above-room-temperature ferroelectric organo-metal halide perovskite: (3-pyrrolinium)(CdCl3), Angewandte Chemie (Intl. Editon), vol. 53, no. 42, pp. 11242-11247, 2014.
    [34]
    W.-Q. Liao, Y. Zhang, C.-L. Hu, et al., A lead-halide perovskite molecular ferroelectric semiconductor, Nat. Commun., vol. 6, p. 7338, 2015, DOI: 10.1038/ncomms8338 [DOI:10.1038/ncomms8338]
    [35]
    H.-Y. Ye, W.-Q. Liao, C.-L. Hu, et al., Bandgap engineering of lead-halide perovskite-type ferroelectrics, Adv. Mater., vol. 28, no. 13, pp. 2579-2586, 2016.
    [36]
    G. H. Haertling, Ferroelectric ceramics: History and technology, J. Am. Ceram. Soc., vol. 82, no. 4, pp. 797-818, 1999.
    [37]
    Y.-M. You, W.-Q. Liao, D. Zhao, et al., An organic-inorganic perovskite ferroelectric with large piezoelectric response, Science, vol. 357, no. 6348, pp. 306-309, 2017.
    [38]
    B. Chen, J. Shi, X. Zheng, Y. Zhou, K. Zhu, and S. Priya, Ferroelectric solar cells based on inorganicorganic hybrid perovskites, J. Mater. Chem. A, vol. 3, no. 15, pp. 7699-7705, 2015.
    [39]
    Y.-J. Kim, T.-V. Dang, H.-J. Choi, et al., Piezoelectric properties of CH3NH3PbI3 perovskite thin films and their applications in piezoelectric generators, J. Mater. Chem. A, vol. 4, no. 3, pp. 756-763, 2016.
    [40]
    R. Ding, H. Liu, X. Zhang, et al., Flexible piezoelectric nanocomposite generators based on formamidinium lead halide perovskite nanoparticles, Adv. Funct. Mater., vol. 26, no. 42, pp. 7708-7716, 2016.
    [41]
    R. Ding, X. Zhang, G. Chen, et al., High-performance piezoelectric nanogenerators composed of formamidinium lead halide perovskite nanoparticles and poly(vinylidene fluoride), Nano Energy, vol. 37, pp. 126-135, 2017, DOI: 10.1016/j.nanoen.2017.05.010 [DOI:10.1016/j.nanoen.2017.05.010]
  • Related Articles

    [1]Zhi-Peng Wu, Jun Zhu, Li-Bin Fang. Resistive Switching Characteristics of Al2O3/ZnO Bilayer Thin Films for Flexible Memory Applications[J]. Journal of Electronic Science and Technology, 2017, 15(4): 364-368. DOI: 10.11989/JEST.1674-862X.70718075
    [2]Wei-Dong He, Lu-Han Ye, Ke-Chun Wen, Ya-Chun Liang, Wei-Qiang Lv, Gao-Long Zhu, Kelvin H. L. Zhan. Materials Research Advances towards High-Capacity Battery/Fuel Cell Devices[J]. Journal of Electronic Science and Technology, 2016, 14(1): 12-20. DOI: 10.11989/JEST.1674-862X.511031
    [3]Qi-Ye Wen. TTA Special Section on Terahertz Materials and Devices[J]. Journal of Electronic Science and Technology, 2014, 12(3): 249-249. DOI: 10.3969/j.issn.1674-862X.2014.03.001
    [4]Mai-Xia Fu, Yan Zhang. Progress of Terahertz Devices Based on Graphene[J]. Journal of Electronic Science and Technology, 2013, 11(4): 352-359. DOI: 10.3969/j.issn.1674-862X.2013.04.004
    [5]Axel Sikora. Portable and Flexible Communication Protocol Stacks for Smart Metering Projects[J]. Journal of Electronic Science and Technology, 2013, 11(1): 58-65. DOI: 10.3969/j.issn.1674-862X.2013.01.011
    [6]Darmawan Sutanto. Electronic Controlled Energy Storage Devices and Applications in Future Smart Grid[J]. Journal of Electronic Science and Technology, 2011, 9(1): 3-8. DOI: 10.3969/j.issn.1674-862X.2011.01.002
    [7]Jun-Sheng Yu, Zhao-Lin Yuan, Guang-Zhong Xie, Ya-Dong Jiang. Preparation, Properties, and Applications of Low-Dimensional Molecular Organic Nanomaterials[J]. Journal of Electronic Science and Technology, 2010, 8(1): 3-9. DOI: 10.3969/j.issn.1674-862X.2010.01.001
    [8]Jun-Sheng Yu, Lu Li, Ya-Dong Jiang, Xing-Qiao Ji, Tao Wang. Luminescent Enhancement of Heterostructure Organic Light-Emitting Devices Based on Aluminum Quinolines[J]. Journal of Electronic Science and Technology, 2007, 5(2): 183-186.
    [9]LORENZ Edward. Endogenous Innovation, the Organization of Work and Institutional Context[J]. Journal of Electronic Science and Technology, 2006, 4(4): 373-384.
    [10]YANG Shang-ming, HU Jie. Java Parallel Implementations of Kohonen Self-Organizing Feature Maps[J]. Journal of Electronic Science and Technology, 2004, 2(2): 29-35.
  • Catalog

      Article Metrics

      Article views (807) PDF downloads (515) Cited by()
      Related
      Proportional views

      /

      DownLoad:  Full-Size Img  PowerPoint
      Return
      Return