Citation: | Xin Tong, Zhiming M. Wang. Ferroelectric Properties and Applications of Hybrid Organic-Inorganic Perovskites[J]. Journal of Electronic Science and Technology, 2017, 15(4): 326-332. DOI: 10.11989/JEST.1674-862X.70909051 |
[1] |
B. Saparov and D. B. Mitzi, Organic-inorganic perovskites: Structural versatility for functional materials design, Chem. Rev., vol. 116, no. 7, pp. 4558-4596, 2016.
|
[1] |
Y. Zhao and K. Zhu, Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications, Chem. Soc. Rev., vol. 45, no. 3, pp. 655-689, 2016.
|
[2] |
Q. Chen, N. De Marco, Y. Yang, et al., Under the spotlight: The organic-inorganic hybrid halide perovskite for optoelectronic applications, Nano Today, vol. 10, no. 3, pp. 355-396, 2015.
|
[3] |
M. Liu, M. B. Johnston and H. J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition, Nature, vol. 501, no. 7467, pp. 395-398, 2013.
|
[4] |
Z. Xiao, R. A. Kerner, L. Zhao, et al., Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites, Nat. Photonics, vol. 11, pp. 108-115, Apr. 2017.
|
[5] |
L. Dou, Y.-M. Yang, J. You, et al., Solution-processed hybrid perovskite photodetectors with high detectivity, Nat. Commun., vol. 5, p. 5404, 2014, DOI: 10.1038/ncomms6404 [DOI:10.1038/ncomms6404]
|
[6] |
X. Y. Chin, D. Cortecchia, J. Yin, A. Bruno, and C. Soci, Lead iodide perovskite light-emitting field-effect transistor, Nat. Commun., vol. 6, p. 7383, 2015, DOI: 10.1038/ncomms8383 [DOI:10.1038/ncomms8383]
|
[7] |
X. Tong, F. Lin, J. Wu, and Z. M. Wang, High performance perovskite solar cells, Adv. Sci., vol. 3, no. 5, p. 1500201, 2016.
|
[8] |
H. Zhou, Q. Chen, G. Li, et al., Interface engineering of highly efficient perovskite solar cells, Science, vol. 345, no. 6196, pp. 542-546, 2014.
|
[9] |
N. J. Jeon, J. H. Noh, Y. C. Kim, W.-S. Yang, S. Ryu, and S. I. Seok, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nat. Mater., vol. 13, n. 9, pp. 897-903, 2014.
|
[10] |
S. Chen, K. Roh, J. Lee, et al., A photonic crystal laser from solution based organo-lead iodide perovskite thin films, ACS Nano, vol. 10, no. 4, pp. 3959-3967, 2016.
|
[11] |
H. Zhu, Y. Fu, F. Meng, et al., Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors, Nat. Mater., vol. 14, pp. 636-642, 2015, 10.1038/nmat4271.
|
[12] |
Y. Wu, F. Xie, H. Chen, et al., Thermally stable MAPbI3 perovskite solar cells with efficiency of 19.19% and area over 1 cm2 achieved by additive engineering, Adv. Mater., vol. 29, no. 28, p. 1701073, 2017.
|
[13] |
Z. Hu, M. Tian, B. Nysten, and A. M. Jonas, Regular arrays of highly ordered ferroelectric polymer nanostructures for non-volatile low-voltage memories, Nat. Mater., vol. 8, no. 1, pp. 62-67, 2009.
|
[14] |
K. N. Kim, J. Chun, S. A. Chae, et al., Silk fibroin-based biodegradable piezoelectric composite nanogenerators using lead-free ferroelectric nanoparticles, Nano Energy, vol. 14, pp. 87-94, 2015, DOI: 10.1016/j.nanoen.2015.01.004 [DOI:10.1016/j.nanoen.2015.01.004]
|
[15] |
R. C. G. Naber, C. Tanase, P. W. M. Blom, et al., High-performance solution-processed polymer ferroelectric field-effect transistors, Nat. Mater., vol. 4, no. 3, pp. 243-248, 2005.
|
[16] |
J. Rdel, W. Jo, K. T. P. Seifert, E.-M. Anton, T. Granzow, and D. Damjanovic, Perspective on the development of lead-free piezoceramics, J. Am. Ceram. Soc., vol. 92, no. 6, pp. 1153-1177, 2009.
|
[17] |
H. Yu, C.-C. Chung, N. Shewmon, et al., Flexible inorganic ferroelectric thin films for nonvolatile memory devices, Adv. Funct. Mater., vol. 27, no. 21, p. 1700461, 2017.
|
[18] |
J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde, and A. Walsh, Atomistic origins of high-performance in hybrid halide perovskite solar cells, Nano Lett., vol. 14, no. 5, pp. 2584-2590, 2014.
|
[19] |
T. S. Sherkar and L. J. Koster, Can ferroelectric polarization explain the high performance of hybrid halide perovskite solar cells? Physical Chemistry Chemical Physics, vol. 18, no. 1, pp. 331-338, 2016.
|
[20] |
Z. Fan, J. Xiao, K. Sun, et al., Ferroelectricity of CH3NH3PbI3 perovskite, J. Phys. Chem. Lett., vol. 6, no. 7, pp. 1155-1161, 2015.
|
[21] |
J. Jiang, R. Pachter, Y. Yang, and L. Bellaiche, Dependence of the electronic and optical properties of methylammonium lead triiodide on ferroelectric polarization directions and domains: A first principles computational study, J. Phys. Chem. C, vol.121, no. 28, pp. 15375-15383, 2017.
|
[22] |
S. Liu, F. Zheng, N. Z. Koocher, H. Takenaka, F. Wang, and A. M. Rappe, Ferroelectric domain wall induced band gap reduction and charge separation in organometal halide perovskites, J. Phys. Chem. Lett., vol. 6, no. 4, 693-699, 2015.
|
[23] |
S. Liu, F. Zheng, I. Grinberg, and A. M. Rappe, Photoferroelectric and photopiezoelectric properties of organometal halide perovskites, J. Phys. Chem. Lett., vol. 7, no. 8, pp. 1460-1465, 2016.
|
[24] |
F. Bi, S. Markov, R. Wang, et al., Enhanced photovoltaic properties induced by ferroelectric domain structures in organometallic halide perovskites, J. Phys. Chem. C, vol. 121, no. 21, pp. 11151-11158, 2017.
|
[25] |
Y. Kutes, L. Ye, Y. Zhou, S. Pang, B. D. Huey, and N. P. Padture, Direct observation of ferroelectric domains in solution-processed CH3NH3PbI3 perovskite thin films, J. Phys. Chem. Lett., vol. 5, no. 19, pp. 3335-3339, 2014.
|
[26] |
M. Coll, A. Gomez, E. Mas-Marza, et al., Polarization switching and light-enhanced piezoelectricity in lead halide perovskites, J. Phys. Chem. Lett., vol. 6, no. 8, pp. 1408-1413, 2015.
|
[27] |
D. Seol, A. Jeong, M. H. Han, et al., Origin of hysteresis in CH3NH3PbI3 perovskite thin films, Adv. Funct. Mater., 2017, DOI: 10.1002/adfm.201701924 [DOI:10.1002/adfm.201701924]
|
[28] |
P. Wang, J. Zhao, L. Wei, et al., Photo-induced ferroelectric switching in perovskite CH3NH3PbI3 films, Nanoscale, vol. 9, no. 11, pp. 3806-3817, 2017.
|
[29] |
Y. Rakita, O. Bar-Elli, E. Meirzadeh, et al., Tetragonal CH3NH3PbI3 is ferroelectric, PNAS, vol. 114, no. 28, pp. E5504-E5512, 2017.
|
[30] |
H. Rhm, T. Leonhard, M. J. Hoffmann, and A. Colsmann, Ferroelectric domains in methylammonium lead iodide perovskite thin-films, Energy Environ. Sci., vol. 10, no. 4, pp. 950-955, 2017.
|
[31] |
Y. Zhang, Y. Liu, H. Y. Ye, et al., A molecular ferroelectric thin film of imidazolium perchlorate that shows superior electromechanical coupling, Angewandte Chemie (Intl. Editon), vol. 53, no. 20, pp. 5064-5068, 2014.
|
[32] |
P. P. Shi, Y.-Y. Tang, P.-F. Li, et al., Symmetry breaking in molecular ferroelectrics, Chem. Soc. Rev., vol. 45, no. 14, pp. 3811-3827, 2016.
|
[33] |
H.-Y. Ye, Y. Zhang, D.-W. Fu, and R.-G. Xiong, An above-room-temperature ferroelectric organo-metal halide perovskite: (3-pyrrolinium)(CdCl3), Angewandte Chemie (Intl. Editon), vol. 53, no. 42, pp. 11242-11247, 2014.
|
[34] |
W.-Q. Liao, Y. Zhang, C.-L. Hu, et al., A lead-halide perovskite molecular ferroelectric semiconductor, Nat. Commun., vol. 6, p. 7338, 2015, DOI: 10.1038/ncomms8338 [DOI:10.1038/ncomms8338]
|
[35] |
H.-Y. Ye, W.-Q. Liao, C.-L. Hu, et al., Bandgap engineering of lead-halide perovskite-type ferroelectrics, Adv. Mater., vol. 28, no. 13, pp. 2579-2586, 2016.
|
[36] |
G. H. Haertling, Ferroelectric ceramics: History and technology, J. Am. Ceram. Soc., vol. 82, no. 4, pp. 797-818, 1999.
|
[37] |
Y.-M. You, W.-Q. Liao, D. Zhao, et al., An organic-inorganic perovskite ferroelectric with large piezoelectric response, Science, vol. 357, no. 6348, pp. 306-309, 2017.
|
[38] |
B. Chen, J. Shi, X. Zheng, Y. Zhou, K. Zhu, and S. Priya, Ferroelectric solar cells based on inorganicorganic hybrid perovskites, J. Mater. Chem. A, vol. 3, no. 15, pp. 7699-7705, 2015.
|
[39] |
Y.-J. Kim, T.-V. Dang, H.-J. Choi, et al., Piezoelectric properties of CH3NH3PbI3 perovskite thin films and their applications in piezoelectric generators, J. Mater. Chem. A, vol. 4, no. 3, pp. 756-763, 2016.
|
[40] |
R. Ding, H. Liu, X. Zhang, et al., Flexible piezoelectric nanocomposite generators based on formamidinium lead halide perovskite nanoparticles, Adv. Funct. Mater., vol. 26, no. 42, pp. 7708-7716, 2016.
|
[41] |
R. Ding, X. Zhang, G. Chen, et al., High-performance piezoelectric nanogenerators composed of formamidinium lead halide perovskite nanoparticles and poly(vinylidene fluoride), Nano Energy, vol. 37, pp. 126-135, 2017, DOI: 10.1016/j.nanoen.2017.05.010 [DOI:10.1016/j.nanoen.2017.05.010]
|
[1] | Zhi-Peng Wu, Jun Zhu, Li-Bin Fang. Resistive Switching Characteristics of Al2O3/ZnO Bilayer Thin Films for Flexible Memory Applications[J]. Journal of Electronic Science and Technology, 2017, 15(4): 364-368. DOI: 10.11989/JEST.1674-862X.70718075 |
[2] | Wei-Dong He, Lu-Han Ye, Ke-Chun Wen, Ya-Chun Liang, Wei-Qiang Lv, Gao-Long Zhu, Kelvin H. L. Zhan. Materials Research Advances towards High-Capacity Battery/Fuel Cell Devices[J]. Journal of Electronic Science and Technology, 2016, 14(1): 12-20. DOI: 10.11989/JEST.1674-862X.511031 |
[3] | Qi-Ye Wen. TTA Special Section on Terahertz Materials and Devices[J]. Journal of Electronic Science and Technology, 2014, 12(3): 249-249. DOI: 10.3969/j.issn.1674-862X.2014.03.001 |
[4] | Mai-Xia Fu, Yan Zhang. Progress of Terahertz Devices Based on Graphene[J]. Journal of Electronic Science and Technology, 2013, 11(4): 352-359. DOI: 10.3969/j.issn.1674-862X.2013.04.004 |
[5] | Axel Sikora. Portable and Flexible Communication Protocol Stacks for Smart Metering Projects[J]. Journal of Electronic Science and Technology, 2013, 11(1): 58-65. DOI: 10.3969/j.issn.1674-862X.2013.01.011 |
[6] | Darmawan Sutanto. Electronic Controlled Energy Storage Devices and Applications in Future Smart Grid[J]. Journal of Electronic Science and Technology, 2011, 9(1): 3-8. DOI: 10.3969/j.issn.1674-862X.2011.01.002 |
[7] | Jun-Sheng Yu, Zhao-Lin Yuan, Guang-Zhong Xie, Ya-Dong Jiang. Preparation, Properties, and Applications of Low-Dimensional Molecular Organic Nanomaterials[J]. Journal of Electronic Science and Technology, 2010, 8(1): 3-9. DOI: 10.3969/j.issn.1674-862X.2010.01.001 |
[8] | Jun-Sheng Yu, Lu Li, Ya-Dong Jiang, Xing-Qiao Ji, Tao Wang. Luminescent Enhancement of Heterostructure Organic Light-Emitting Devices Based on Aluminum Quinolines[J]. Journal of Electronic Science and Technology, 2007, 5(2): 183-186. |
[9] | LORENZ Edward. Endogenous Innovation, the Organization of Work and Institutional Context[J]. Journal of Electronic Science and Technology, 2006, 4(4): 373-384. |
[10] | YANG Shang-ming, HU Jie. Java Parallel Implementations of Kohonen Self-Organizing Feature Maps[J]. Journal of Electronic Science and Technology, 2004, 2(2): 29-35. |