Probabilistic Quantitative Temporal Constraints: Representing, Reasoning, and Query Answering

Paolo Terenziani and Antonella Andolina

Abstract—In many applications and domains, temporal constraints between actions, and their probabilities play an important role. We propose the first approach in the literature coping with probabilistic quantitative constraints. To achieve such a challenging goal, we extend the widely used simple temporal problem (STP) framework to consider probabilities. Specifically, we propose i) a formal representation of probabilistic quantitative constraints, ii) an algorithm, based on the operations of intersection and composition, for the propagation of such temporal constraints, and iii) facilities to support query answering on a set of such constraints. As a result, we provide users with the first homogeneous method supporting the treatment (representing, reasoning, and querying) of probabilistic quantitative constraints, as required by many applications and domains.

Index Terms—Artificial intelligence (AI), probabilities, query answering, quantitative temporal constraints, temporal reasoning.

1. Introduction

The representing and reasoning about time are the major issues to be considered in all reasoning tasks which take account of a dynamic domain. In particular, they are important tasks in many areas of artificial intelligence (AI), such as planning, scheduling, human-machine interaction, natural language understanding, diagnosis, and robotics. Particularly, in all such areas, the need of representing and reasoning with temporal constraints between actions (e.g., action B must be started at least 1 hour after the end of action A) is of primary importance.

The approaches explicitly focusing on temporal constraints (which are the focus of this paper) can be distinguished on the basis of whether they focus on the qualitative (e.g., A before B) or quantitative (e.g., the delay between the end of B and the start of A is 10 minutes) aspect of temporal knowledge (see the surveys in [1]-[3]). Among the approaches of the first kind, the interval algebra[4] and the point algebra[5] deal with a qualitative representation of temporal knowledge relative to intervals and points, respectively. On the other hand, quantitative approaches, such as those in [6] and [7], deal with metric temporal statements concerning points. Furthermore, hybrid approaches have been proposed in order to combine the expressiveness capabilities of these formalisms[8],[9], where qualitative and metric information are integrated in a single model. All of these proposals rely on the framework of the constraint satisfaction problem (CSP), in which they approach the relevant reasoning tasks by representing the temporal objects as variables with temporal domains, and the available temporal knowledge as a set of constraints between these variables. Unfortunately, these temporal constraint-based reasoning approaches inherit from the CSP a number of fundamental limitations, mainly related to a lack of flexibility and a limited representation of uncertainty: In all such approaches, temporal constraints are represented by a set of “equally possible” precise temporal relations/constraints between two time units.

“In classical CSPs, knowledge is embedded in a set of hard constraints, each one restricting the possible values of a set of variables. However constraints in real world problems are seldom hard, and CSPs are often idealizations that do not account for the preference among feasible solutions.”

While usually, in real world problems, constraints are satisfied to a degree, rather than satisfied or not satisfied, only “hard” and “crisp” temporal constraints can be represented in classical approaches, making it impossible to tolerate partial violation of constraints and to account for preferences among feasible solutions. As a practical example, consider the development of lumbalgia pathologies[10]. Brucellosis is one infectious pathology which may be the origin of serious lumbalgia problems. It is usually composed of an inoculation event, an initial period, and a period of undulating fever and, finally, it reaches the state of an intervertebral affection. There is some (vague) knowledge about the temporal evolution of Brucellosis cases: Just as an example, the initial period usually starts at the time between one and three weeks after the inoculation event, although extreme cases it ranges from starting at the very inoculation time up to four weeks after. Thus, a “classical” solution, which cannot accommodate different preferences/priorities/possibilities/probabilities for the different alternatives, is not expressive enough to cope...
with the problem. Moreover, a related issue concerns the inability to associate either different priorities to constraints, with the aim of satisfying as much as possible the most important ones, or probabilities, to represent the probability that a given constraint holds (in the common case of alternative possible constraints). Finally, classical approaches account for uncertainty, which pervades most practical problems, in a limited way. For instance, in interval algebra a constraint is expressed as a set of equally possible atomic relations which can hold between two intervals, so that the uncertainty relative to their mutual position is only related to the cardinality of this set. It is impossible to express more refined knowledge concerning the uncertainty affecting constraints, as in the case where the presence of a particular constraint is not certain, but we have some idea about its degree of “plausibility”, or its probability.

In order to overcome the above limitations, the CSP formalism has been extended in a fuzzy direction, by replacing classical “hard” and “crisp” constraints with “soft” and “non-crisp” constraints.

1.1 Non-Crisp CSP: General Approaches

Bugarin et al.\(^{[13]}\) discussed a wide number of approaches which explicitly include time as another decision variable in fuzzy propositions and rules. Restricting the attention to CSP approaches only, a number of temporal reasoning approaches based on the fuzzy\(^{[14]}\) CSP have been devised. For instance, Barro et al.\(^{[10]}\) introduced a model for the representing and handling of fuzzy temporal references. They defined the concepts of date, time extent, and interval, according to the formalism of possibility theory, and relations between them, interpreted as constraints on the distances and projected onto fuzzy temporal constraint satisfaction networks. Vila and Godo\(^{[16]}\) proposed a propositional temporal language based on fuzzy temporal constraints to cope with domains where the knowledge of propositional nature and explicit handling time, imprecision, and uncertainty were required. The language was provided with natural possibilistic semantics to account for the uncertainty issued by the fuzziness of temporal constraints. They also presented an inference system based on specific rules dealing with the temporal constraints and a general fuzzy modus ponens rule that the behaviour was shown to be sound. Kamide and Koizumi\(^{[18]}\) have recently proposed an inconsistency-tolerant probabilistic tree logic. Recently, Gammoudy et al. have proposed a model of Allen’s qualitative relations between fuzzy time intervals\(^{[19]}\), while Billet et al. have considered “ill-known” time intervals\(^{[20]}\).

In the area of scheduling/planning, several approaches have faced the fact that, in planning/scheduling contexts, temporal constraints should not be all considered in the same way, since some of them are controllable and the others are not. In this context, the simple temporal network with uncertainty (STNU) has been introduced to extend the simple temporal network (STN)\(^{[21]}\), by setting bounded uncertainty to cope with uncontrollable events. The STNU has also been extended with a probabilistic representation of the uncertainty\(^{[19]}\). In the probabilistic extension, information regarding the distribution of uncontrollable events allows planning for outcomes which are more likely. More recently, a large amount of work has been devoted to temporal planning with uncertainty, leading to different solutions, including temporal plan networks with uncertainty\(^{[23]}\), disjunctive temporal problems with uncertainty\(^{[21]}\), conditional STNU\(^{[21]}\), simple temporal problem (STP) under uncertainty\(^{[22]}\), and probabilistic temporal plan networks\(^{[24]}\). Fang et al.\(^{[25]}\) introduced the probabilistic simple temporal network (pSTN), a probabilistic formalism for representing temporal problems with bounded risk and utility over event timing. They also introduced a constrained optimisation algorithm for pSTNs that achieved compactness and efficiency, for strong controllability\(^{[26]}\), to provide robust scheduling. Yorke-Smith et al.\(^{[27]}\) have proposed a unifying framework, in which both preferences and uncertainty (related to the controllability problem) were coped with in an integrated approach. Recent planning approaches have focused on the treatment of temporal constraints with preferences\(^{[25][26]}\).

1.2 Non-Crisp Temporal Constraints

While the above approaches cope with different ranges of phenomena, an important mainstream of AI research (in which our approach is located) has focused specifically on the representation of “non-crisp” temporal constraints between points/intervals, and on the propagation of such constraints\(^{[28]}\). Concerning qualitative constraints, Ryabov et al.\(^{[29]}\) attached a probability to each of Allen’s basic interval relations. An uncertain relation between two temporal intervals was represented as a disjunction of Allen’s probabilistic basic relations. Using the operations of inversion, composition, and addition, defined for this probabilistic representation, they presented a path consistency algorithm. A similar probabilistic approach has been proposed more recently by Moulob and Liu\(^{[31]}\), as an adaptation of the general probabilistic CSP framework. On the other hand, Badaloni and Giacomin\(^{[32]}\) extended Allen’s interval-based framework to associate a preference degree to relations between intervals. On the other hand, to the best of our knowledge, “non-crisp” quantitative temporal constraints have only been considered by the approach by Khatib et al.\(^{[33]}\). They extended constraint-based temporal reasoning (and, in particular, the STP and temporal constraint satisfaction problem (TCSP) frameworks\(^{[29]}\)) to allow for reasoning about temporal preferences, and the complexity of the resulting formalism was examined. While in general such problems are NP-complete, they showed that, if one exploits C-semirings in the treatment of preferences, tractability can be achieved. The approach proposed by Khatib et al. is the closest one to ours proposed in the literature, since we are both based on STP. However, a main difference shows up: While Khatib et al. dealt with preferences, we cope with probabilities. Thus, for instance, completely different operations (of intersection and composition) are provided for temporal reasoning.
1.3 Goals of the Proposed Approach

We propose an approach that overcomes the current treatment of non-crisp temporal constraints in two main aspects: We propose the approach that 1) supports the association of probabilities to quantitative temporal constraints and 2) copes with query answering about such constraints for the first time.

Considering the aspect 1), there is no doubt about the extensive use and ascertained usefulness of probabilities (e.g. [34]) and of quantitative temporal constraints (e.g., [1]-[3]) in the AI context (e.g., to deal with knowledge representing or planning)\(^2\). Therefore, the absence of a framework in which a probability distribution can be associated with quantitative temporal constraints is a severe limitation of the current literature, which we aim at overcoming with our work.

Considering 2), it is worth noticing that, in most practical applications, supporting temporal reasoning to check the consistency of a knowledge base of temporal constraints (i.e., in order to check whether they admit a solution) is not enough. Indeed, it is important to be able to query the temporal constraints, e.g., to check whether a given instantiation of some of the constraints (possibly a partial instantiation) is possible (i.e., it is part of at least a solution). For instance, in the approaches based on the hypothesizing and test paradigm—like, in planning and scheduling, queries to the temporal constraints may be fundamental to investigate the temporal feasibility of some partial solution. Surprisingly, despite the importance of such a task, query answering has been mostly neglected in the context of temporal constraints\(^3\), and has been completely neglected in the context of non-crisp temporal constraints. In our paper, we overcome such a significant limitation of the current literature, proposing an approach for querying probabilistic quantitative temporal constraints (PQTCs).

1.4 Organization of the Paper

In Section 2, we briefly remind the basics about “crisp” (i.e., without considering probabilities) quantitative temporal constraints, temporal reasoning, and query answering operating on them. In Section 3, we introduce our representation of PQTCs. In Section 4 we describe our temporal reasoning approach. Section 5 proposes our query language and our query answering approach. Finally, Section 6 contains the conclusions.

2. Preliminaries about Crisp Quantitative Temporal Constraints

Quantitative temporal constraints involve metric time and are very frequent in many applications and domains. They include dates (e.g., “John arrived on October 10, 1999 at 10:00”), duration (e.g., “John worked for 3 hours”), and delays (e.g., “John arrived 10 minutes after Mary”).

Different types of approaches have been developed within the AI community in order to deal with quantitative temporal constraints (see the surveys in [1]-[3]). In this section we introduce some preliminaries regarding one of the most used approaches, i.e., STP\(^3\). Readers familiar with these topics can safely skip this section.

2.1 Representing STPs

An STP constraint is a bound on the differences of the form \(c \leq x - y \leq d\), where \(x\) and \(y\) are time points and \(c\) and \(d\) are the numbers whose domains can be either discrete or dense. The intuitive temporal interpretation of the constraint is that the temporal distance between the time points \(x\) and \(y\) is between \(c\) (minimum distance) and \(d\) (maximum distance). It is possible to specify strict inequalities (i.e., \(<\), and \(\Rightarrow\), and \(\leftarrow\)), can be used to denote infinite lower and upper bounds, respectively (i.e., no lower or upper bound). An STP is a set of constraints, i.e. a conjunction of STP constraints.

Two representations are often used for STPs: Graph and matrix. An STP is represented as a graph whose nodes correspond to the time points of the STP and the arcs are labeled with a weight, representing the maximum temporal distance between the temporal points. A constraint \(c \leq x - y \leq d\) is thus represented by two edges corresponding to the pair of inequalities \(x - y \leq d\) and \(c \leq x - y\). For short, usually the arcs are labeled by the interval \([c, d]\). Alternatively, an STP is represented as a matrix \(D\) of size \(N \times N\) where \(N\) is the number of temporal points and where the element \(D[x,y] = d\) represents the maximum distance \(d\) between the points \(x\) and \(y\). The minimum distance \(c\) is represented as the maximum distance \(D[y,x] = -c\) between \(y\) and \(x\).

Example. Let us consider the following information concerning three time points \(A, B,\) and \(C\). \(B\) occurs between 2 and 4 hours after \(A\), \(C\) occurs between 2 and 4 hours after \(B\) and between 2 and 6 hours after \(A\). This information can be represented by the following STP \(S\) composed by a conjunction of three STP constraints (in this example we assume that the domain is the integers). We provide also the representations of \(S\) as a graph and as a matrix, as shown in Fig. 1.

\[
2 \leq B - A \leq 4, \ 2 \leq C - B \leq 4, \ 2 \leq C - A \leq 6.
\]

2.2 Consistency and Minimal Network

Temporal reasoning on an STP is performed by propagating the constraints and obtaining the minimal network\(^6\). The minimal network is the tightest equivalent STP, i.e., an STP where the minimum and maximum implied distances between each pair of points are made explicit. Computing a minimal network of an STP corresponds to computing the all-pairs’ shortest paths of the graph; an algorithm such as the Floyd-Warshall’s one can be used\(^9\). Such an algorithm can also determine the consistency of an STP by checking whether it contains negative cycles. Floyd-Warshall’s algorithm is shown in Table 1; in the algorithm, 1, 2, · · · , \(n\) denote the time points (e.g., starting/ending points of actions) and \(C(i, j)\) denotes the

\(^2\) Delay, for example, is a duration clause.

\(^3\) This approach is due to Terenziani and Catenini [2].

\(^4\) Probability, for example, is a duration clause.

\(^5\) This approach is due to Terenziani and Catenini [2].

\(^6\) This approach is due to Terenziani and Catenini [2].

\(^7\) This approach is due to Terenziani and Catenini [2].

\(^8\) This approach is due to Terenziani and Catenini [2].

\(^9\) This approach is due to Terenziani and Catenini [2].
The value 3 for the edge between A and B (i.e., if B is exactly 3 hours after A) is part of at least a solution. Specifically, this value corresponds to the two solutions of the STP where 1) $C-B=2$ and $C-A=5$ and 2) $C-B=3$ and $C-A=6$. However, not every combination of values admitted by the constraints in the minimal network results in a solution of the STP. Consider, for example, $B-A=3$ and $C-B=4$, while they are individually admitted by the constraints in the minimal network of S, they cannot be extended to a solution: In fact, no consistent value can be chosen for $C-A$ (in fact $B-A=3$ and $C-B=4$ are the values that belong to two different solutions).

If an STP changes because a new tighter constraint is added, a new constraint propagation is required because it is necessary to take into account the consequences of the change on the other constraints, which can possibly be tightened, and to reestablish the minimal network. For example, in S, if we tighten the constraint $B-A$ to $3 \leq B-A \leq 4$ (i.e., we rule out the value $B-A=2$), also the other two constraints would be tightened and the new minimal network has $5 \leq C-A \leq 6$ (in fact, the value $C-A=4$ is no longer possible) and $2 \leq C-B \leq 3$ (in fact, the value $C-B=4$ is also no longer possible).

2.4 Querying an STP

Given an STP, it is useful to ask queries and, in particular, whether some constraints are possible with regard to the STP (i.e., they are consistent with the STP or, equivalently, there is a solution of the STP where the constraints are satisfied\(^{[35]}\)). The discussion below assumes that the minimal network has already been obtained.

Asking a query with one constraint is equivalent to determine whether the constraint is consistent with the minimal network of the STP, i.e., whether at least one value admitted by the query constraint belongs to a solution of the STP. In the example, asking whether a constraint such as $3 \leq B-A \leq 6$ is possible with regard to the STP S, implies to determine whether at least one value between 3 and 6 for $B-A$ belongs to a solution of the STP S. Thus, it is possible to answer such a query by verifying whether the intersection between the query constraint and the corresponding constraint in the minimal network is empty. In the example $[3,6] \cap [2,4] \neq \emptyset$, thus the constraint is possible.

When a query is composed by more than one constraint, it is not possible to answer it by simply inspecting the minimal network. In fact, for reasons derived from the discussion above, constraints can be individually consistent but inconsistent when considered together. For example, in S the constraints $[3 \leq B-A \leq 6, 4 \leq C-B \leq 4]$ are individually possible but, taking them together, they do not correspond to any solution of S. Thus, in order to answer to queries with two or more constraints, such constraints must be added to the STP and then be propagated by using the Floyd-Warshall’s algorithm to detect whether they are conjunctively consistent (i.e., no negative cycle has been created).

Table 1: Floyd-Warshall’s algorithm

<table>
<thead>
<tr>
<th>Floyd-Warshall’s algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>for $k := 1$ to n do</td>
</tr>
<tr>
<td>for $i := 1$ to n do</td>
</tr>
<tr>
<td>for $j := 1$ to n do</td>
</tr>
<tr>
<td>$C(i,j) = C(i,j) \cap (C(i,k) \cap C(k,j))$</td>
</tr>
<tr>
<td>where $[l_1, u_1] \cap [l_2, u_2] = [\max(l_1, l_2), \min(u_1, u_2)]$</td>
</tr>
<tr>
<td>and $[l_1, u_1] \cap [l_2, u_2] = [l_1 + l_2, u_1 + u_2]$</td>
</tr>
</tbody>
</table>

Fig. 1. Representations of S as: (a) graph and (b) matrix.

Fig. 2. Graph representation of S after the application of Floyd-Warshall’s algorithm.

2.3 Solutions of an STP

Thanks to the properties of the minimal network, one is granted that each value of a constraint of the minimal network belongs to a solution of the STP\(^{[35]}\). For example, given the constraint $2 \leq B-A \leq 4$ in the minimal network of the STP S, its temporal computational cost is cubic in the number of time points.

Applying Floyd-Warshall’s algorithm to the STP S in the example allows to determine the minimal network of S, where, for example, it is made explicit that, if B occurs at least 2 hours after A and C at least 2 hours after B, C must occur at least 4 hours after A. The details are shown in Fig. 2.
3. Probabilistic Quantitative Temporal Networks

In this work, we aim at extending quantitative (i.e., metric) temporal constraints to support the possibility to associate probabilities with alternative constraints. As most approaches focus on quantitative constraints (see [1]-[3]), we base our approach on the notion of the distance between time points. Indeed, we base our approach on STP[4]. In our approach, the distances between two points are a convex and discrete set of alternatives, from a minimum distance to a maximum distance, and we associate a probability to each distance.

Definition. Probabilistic quantitative temporal label (PQTL), probabilistic quantitative temporal constraint (PQTC), and probabilistic temporal network (PTN).

Let \(t_i, t_j \in \mathbb{R} \) be time points.

- Let \(p_1, p_2, \ldots, p_n \in \mathbb{R} \) be probabilities \((0 \leq p_i \leq 1)\).
- Let \(d_1, d_2, \ldots, d_k \in \mathbb{Z} \) be distances (between points).

A PQTL is a list \((d_1, p_1), (d_2, p_2), \ldots, (d_k, p_k)\), where \(\sum p_1, p_2, \ldots, p_n = 1 \), or the distinguished label \(\bot \), denoting the completely undeterminate constraint (in which all distances are possible). In the following we denote the domain of PQTLs by \(L \).

A PQTC is a constraint of the form \(t_i \mathcal{C} t_j \), where \(C \in L \) and \(t_i, t_j \in \mathbb{R} \) are time points.

A PTN is an oriented graph \(G = (V, E) \) with a labelling \(\lambda \), where \(V \) is a set \(\{t_1, t_2, \ldots, t_n \} \) of time points, \(E \subseteq V \times V \), and \(\lambda : E \rightarrow L \), where \(\times \) is the standard Cartesian product.

The meaning of a constraint \(t_i \mathcal{C} t_j \), \((d_1, p_1), (d_2, p_2), \ldots, (d_k, p_k)\), \(t \) is that the distance \(t_j - t_i \) between \(t_j \) and \(t_i \) is \(d_l \) with probability \(p_l \), or \(d_2 \) with probability \(p_2 \), \ldots, or \(d_m \) with probability \(p_m \).

Note. For the sake of readability, in each probabilistic temporal constraint, we order the distances \(d_1, d_2, \ldots, d_k \) (i.e., \(d_1 < d_2 < \cdots < d_k \)), but our approach is mostly independent of such a convention.

Example 1. For the sake of simplicity, let us work at the granularity of hours, and let us denote the beginning of a given day by \(t_0 \). Suppose we want to model the fact that John wakes up (time point \(t_1 \)) at 6 with the probability of 0.2, at 7 with 0.6, or at 8 with 0.2, has lunch (time point \(t_2 \)) at 12 with 0.3, 13 with 0.5, or 14 with 0.2, has dinner (time point \(t_3 \)) at 18 with 0.1, 19 with 0.1, 20 with 0.2, or 21 with 0.6, and has dinner (time point \(t_4 \)) at 0.5 or 0.8 (hours after lunch). These facts can be modelled by the PTN:

\[
\textrm{PTN}_{\text{John}} = \langle P_j, E_j \rangle
\]

where

- \(P_j = \{t_0, t_1, t_2, t_3, t_4\} \)
- \(E_j = \{(t_0, t_1), (t_0, t_2), (t_0, t_3), (t_1, t_2), (t_1, t_3), (t_2, t_3), (t_2, t_4), (t_3, t_4)\} \)
- \(\lambda_j(t_0, t_1) = \langle(6, 0.2), (7, 0.6), (8, 0.2)\rangle \)
- \(\lambda_j(t_0, t_2) = \langle(12, 0.3), (13, 0.5), (14, 0.2)\rangle \)
- \(\lambda_j(t_0, t_3) = \langle(18, 0.1), (19, 0.1), (20, 0.2), (21, 0.6)\rangle \)
- \(\lambda_j(t_2, t_3) = \langle(7, 0.5), (8, 0.5)\rangle \).

The probabilistic quantitative temporal network (PQTN) in Example 1 can be graphically modelled as shown in Fig. 3.

4. Temporal Reasoning on PQTNs

Our representation model is basically an extension of the STP in order to include probabilities. We can thus perform temporal reasoning as in the STP, using Floyd-Warshall’s algorithm. However, we have to adapt it to applying to PQTNs. In order to achieve such a goal, we need to identify suitable definitions of the intersection (\(\cap \)) and of the composition (\(@ \)) operators, to propagate both distances and probabilities.

4.1 Intersection and Composition Operations

Now, we define our intersection and composition operators. For the sake of simplicity, we adopt the following notations.

Notations. Given two PQTLs \(c_1 \) and \(c_2 \) to be intersected or composed, we indicate with \(p_i^1 \) and \(p_i^2 \) which are the probabilities of \(d_i \) in the first PQTL and in the second PQTL, respectively.

In our approach, the operator intersection \(\cap \) is used in order to “merge” two constraints \(\langle(d_1, p_1), (d_2, p_2), \ldots, (d_k, p_k)\rangle \) and \(\langle(d_1, p_1), (d_2, p_2), \ldots, (d_m, p_m)\rangle \) concerning the same pair of time points. The set intersection between the two input sets of distances is computed, and, for each intersecting distance, its probability is evaluated as the product of the probabilities of such a distance in the first and in the second constraints (since it is an “AND combination” of the two cases). The formal definition is given below.

Definition. Intersection (\(\cap \)).

Given two PQTLs:

\[
\langle(d_1, p_1), (d_2, p_2), \ldots, (d_n, p_n)\rangle
\]

their intersection is defined as follows:

Let \(d_1^1, d_2^1, \ldots, d_n^1 = \{d_1, d_2, \ldots, d_n\} \cap \{d_1, d_2, \ldots, d_n\} \), then

\[
\langle(d_1, p_1^1), (d_2, p_2^1), \ldots, (d_n, p_n^1)\rangle
\]

is Normal\(\langle(d_1, p_1^1 * p_2^1), (d_2, p_2^1 * p_2^1), \ldots, (d_n, p_n^1 * p_n^1)\rangle\)

where Normal\(\langle(d_1, p_1^1), (d_2, p_2^1), \ldots, (d_n, p_n^1)\rangle\) normalizes probabilities in such a way that their sum is 1 and * represents product.
Notice that the intersection \cap may be empty (in the case that the intersection between $\{d_1, d_2, \ldots, d_n\}$ and $\{d_1, d_2, \ldots, d_m\}$ is empty).

The composition operator $@$ is used to infer the constraint between two time points t_i and t_j, given the constraint between t_i and t_k and the constraint between t_j and t_l. The output distances are evaluated as the pairwise sum of the input distances. For each output distance d', its probability p^e is obtained by summing up the product $p_1^e * p_2^e$ of the probabilities of each pair of the distances d_i (from the first input constraint) and d_j (from the second constraint) such that $d_i + d_j = d'$. More formally:

Definition. Composition ($@$).

Given two PTQls

$$\langle (d_1, p_1), (d_1, p_1), \ldots, (d_i, p_i) \rangle$$

$$\langle (d_2, p_2), (d_2, p_2), \ldots, (d_j, p_j) \rangle,$$

their composition is defined as follows:

Let

$$[d_1', d_1', \ldots, d_j'] = \{d' : d' = d_i + d_j \land$$

$$d_i \in [d_1, d_2, \ldots, d_i], d_j \in [d_1, d_2, \ldots, d_j]\}$$

$$p^e = \sum_{d_i, d_j} p_1^{e_i} * p_2^{e_j}$$

then

$$\langle (d_1, p_1), (d_1, p_1), \ldots, (d_i, p_i) \rangle @$$

$$\langle (d_2, p_2), (d_2, p_2), \ldots, (d_j, p_j) \rangle =$$

$$\langle (d_1, p^e), (d_1, p^e), \ldots, (d_j, p^e) \rangle.$$

Example 2. As an example, let us consider the composition of the constraints between t_0 and t_1 and between t_2 and t_3 in Example 1: $\langle (12, 0.3), (13, 0.5), (14, 0.2) @ (7, 0.5), (8, 0.5)\rangle = \langle (19, 0.15), (20, 0.4), (21, 0.35), (22, 0.1)\rangle$.

As an example of intersection, let us intersect the above result with the constraint between t_2 and t_1 in Example 1, i.e.,

$$\langle (19, 0.15), (20, 0.4), (21, 0.35), (22, 0.1)\rangle \cap$$

$$\langle (18, 0.1), (19, 0.1), (20, 0.2), (21, 0.6)\rangle$$

$$= \langle (19, 0.015), (20, 0.08), (21, 0.21)\rangle$$

$$= \langle (19, 0.048), (20, 0.264), (21, 0.688)\rangle.$$

Complexity (intersection and composition). By exploiting the ordering of the distances, intersection can be computed in linear time and space (with respect to the number of distances). On the other hand, considering composition, the time required for the evaluation of the probabilities of the output distances is quadratic with respect to the number of input distances. As regarding space, given the fact that input (and output) distances are continuous, the number of output distances is the sum of the cardinality of the two sets of input distances.

4.2 Example

Example 3. The application of our instantiation of the Floyd-Warshall’s algorithm to the PTN in Example 1 gives as the result the set of constraints PTN’ in the following:

$$PTN’_{final} = \{P_7, C'_7\}$$

where

$$\mathbf{P}_j = \{t_0, t_1, t_2, t_3\}$$

$$C'_j = \{t_0 \langle (6, 0.054065), (7, 0.853922), (8, 0.0920125)\rangle t_1, \ldots, \}$$

$$t_2 \langle (12, 0.079423), (13, 0.813231), (14, 0.543445)\rangle t_3, \ldots, \}$$

$$t_2 \langle (7, 0.376175), (8, 0.623825)\rangle t_3\}.$$

5. Query Answering

Temporal reasoning can be used in order to evaluate the minimal network of a set of PTQCs. To cope with the need of real applications and tasks/domains, however, having the minimal network is not enough. Indeed, it is very important to have the possibility of querying it, in order to see what the temporal constraints between specific time points are. Also, it is important to investigate the consequences of some assumption/choice, though queries of the form “what are the constraints between ...” (this is very important, e.g., while adopting the widespread hypothesize and test paradigm). In our approach, we support several different types of queries. Part of our query language is reported in Fig. 4.

- Hypothetical queries (<HypQ>) are standard queries <StandardQ> that have to be answered with the assumption that some additional probabilistic temporal constraints (such as a set of PTQCs is, indeed, a PTN, indicated by <PTN> in the grammar) hold.

Such queries are answered by first adding the new PTQCs to the minimal network, and then applying our instantiation of Floyd-Warshall’s algorithm to obtain a new minimal network. A warning is given in case no minimal network can be obtained, since the new constraints are not consistent with the given minimal network. Then, the query <StandardQ> is answered (as detailed below) in the new minimal network. Notice also that intersection (\cap) must be used in order to add the new hypothetical constraints.

Example 4. The query (StandardQ) $IF t_1 \langle (3, 0.2), (4, 0.4)\rangle t_2$, $t_2 \langle (6, 0.25), (7, 0.35), (8, 0.25), (9, 0.15)\rangle t_3$ requires the addition of two constraints to the minimal network in Example 3. First, the intersection between the constraints between t_i and t_j and between t_k and t_l and the constraints in the query are performed:
Example 6. For instance, given the minimal network in Example 3, the query IP≥0.2 asks for those constraints which have a probability greater than 0.2, and gives as the result:

\[
\begin{align*}
&\{t_0, t_1, t_2, (13,0.813231)\} \\
&\{t_1, (5,0.026257) , (6,0.611067)\} \\
&\{t_1, (14,0.543445)\} \\
&\{t_2, (7,0.376175), (8,0.623825)\} \\
\end{align*}
\]

3) Global probability (GP) queries provide as the output the constraints obtained by first removing from the constraints all those pairs \((d, p)\) such that \(p \langle \text{Op} \rangle \langle \text{Prob} \rangle\) does not hold, where \(\langle \text{Op} \rangle\) is a comparison operator (i.e., one of \(\langle <, \leq, =, \geq, > \rangle\)), and \(\langle \text{Prob} \rangle\) is a probability value. Empty PQTCs are removed from the output. Notably, the result of such an operation is not a PTN, since, in the constraints, the sum of the probabilities is not necessarily 1.

Example 7. For instance, given the minimal network in Example 3, the query “GP≥0.2” gives as the result:

\[
\begin{align*}
&\{t_0, (7,1), t_1, (13,1), t_2, (21,1), t_3, (6,1)\} \\
&\{t_1, (14,1), t_2, (8,1), t_3\} \\
\end{align*}
\]

4) Boolean queries (“BoolQ”) can be simple Boolean temporal queries (SBTQs) or composed Boolean temporal queries (CBTQs). Such queries ask about the validity of one (SBTQ) or more (CBTQ) constraints between pair of points, and return a Boolean value.

Definition. SBTQ and CBTQ.

- Let \(t_i, t_j \in \mathbb{R}\) be time points.
- Let \(p_1, p_2, \ldots, p_n \in \mathbb{R}\) be probabilities.
- Let \(d_1, d_2, \ldots, d_n \in \mathbb{Z}\) be distances (between points).
- Let \(\langle \text{Op}_1, \text{Op}_2, \ldots, \text{Op}_n \rangle\) be comparison operators (i.e., one of \(\langle <, \leq, =, \geq, > \rangle\)).

An SBTQ is a query of the form: \(t_i \langle \text{Op}_1, p_1 \rangle t_j\). A CBTQ is a set of SBTQs.

An SBTQ \(t_i \langle d, \text{Op}, p \rangle t_j\) is simply answered by considering in the minimal network the PQTC relating \(t_i\) and \(t_j\) and checking whether the distance between \(t_i\) and \(t_j\) may be \(d\), and whether its probability satisfies the condition imposed by the Op operator.

Example 8. For instance, given the minimal network in Example 3, the query \(t_2 \langle 20 \geq 0.5 \rangle\) asks whether 20 is a possible distance between \(t_2\) and \(t_0\), and whether it has a probability greater or equal to 0.5. Given the above set of constraints, the result of the query is TRUE, since 20 is a possible distance between \(t_2\) and \(t_0\), and the probability of the distance 20 is indeed 0.6, and thus greater than 0.5.

Answering a CBTQ is more complex. Indeed, it is not correct to separately test each SBTQ composing it, and returning TRUE if all checks are true (see the discussion in Section 2).

CBTQs are answered in four steps.
Step 1. Each SBTQ is checked independently of the others. If any one of them is not satisfied, a negative answer is provided. Otherwise, Steps 2 and 3 are performed.

Step 2. For each SBTQ $t_i(d, Op, p_i)_t$, the corresponding PQTC relating t_i and t_j in the minimal network is modified by removing all the distances except d.

Step 3. The resulting constraints are then propagated via the (instantiation of the) Floyd-Warshall’s algorithm.

Step 4. The answer is YES if the resulting set of constraint is consistent, NO otherwise.

Example 9. For instance, given the minimal network in Example 3, the result of Step 3 of the query $\{t_0(7 \geq 0.5), t_1(8 \geq 0.5), t_2\}$ (asking whether the distance between t_0 and t_1 may be greater or equal to 0.5, and the distance between t_2 and t_1 may be 8, with the probability greater or equal to 0.5) is the following network:

$$\{t_0((7,1)), t_0((12,3.50183e-7), (13, 0.9999999)), t_2, t_0((20,0.0001087), (21, 0.999891)) t_2, t_1((5,0.000154), (6, 0.999846)), t_2, t_1((13,0.004652), (14, 0.995348)), t_2, t_2(8,1), t_3\},$$

so that the final answer is YES.

6. Conclusions

Many AI researches face the treatment of time and of temporal constraints. In order to cope with the need of many areas, including planning and scheduling, the current literature in the area is moving from the treatment of “crisp” temporal constraints to fuzzy or probabilistic constraints. Indeed, the recent literature shows that the treatment of probabilities and/or preferences in temporal reasoning is of paramount importance in the AI context. However, despite their wide use to cope with many tasks, probabilities have been studied only in conjunction with qualitative temporal constraints\[9\][10], while they have not been proposed in combination with quantitative temporal constraints yet. This is a severe limitation in several areas, including planning and scheduling. In this paper, we overcome such a limitation by i) extending quantitative temporal constraints based on STP\[9\] with probabilities, and ii) proposing an approach for the propagation of such temporal constraints. Additionally, most applications require the possibility of asking queries to a set of temporal constraints. In this paper, to the best of our knowledge, iii) we propose the first approach supporting query answering on “non-crisp” (i.e., probabilistic) temporal constraints.

Though our approach is complete task and domain independent, in our future work we plan to apply it in the treatment of temporal constraints within the Guide-Line Acquisition, Representation and Execution (GLARE)\[9\] and META-GLARE\[9\] projects, to deal with clinical guidelines, and with their interactions\[9].

References

Paolo Terenziani was born in Turin in 1963. In 1987 he got the Laurea in computer science from the University of Turin, Turin. In 1993 he got the Ph.D. degree in computer science from the University of Turin and University of Milan, Milan. In 1993, he became a researcher and he became an assistant professor in 1998. Since 2000, he has been a full professor with the Dipartimento di Scienze e Innovazione Tecnologica (DISIT), University of Western Piedmont, Alessandria. He is also a cooperating researcher with the Computer Science Department, University of Turin and an adjunct professor with the Griffith University, Brisbane. His research activity has begun in 1987 and it concerns mainly the field of artificial intelligence, specifically the areas of computational linguistics, design of ontologies and formalisms for knowledge representation (focusing his attention on modelling time, temporal constraints, causality, and temporal periodicity), and automatic reasoning (with particular attention to representation and reasoning with temporal constraints, and, recently, on process mining), the field of databases (extending temporal relational databases to cope with different phenomena, including temporal constraints, intermittent, nearly periodic and strongly periodic events, versioning and proposal vetting, and the telic/atelic dichotomy), and medical informatics. Regarding these research topics he has published over 150 papers in peer-reviewed international journals and books derived from conference proceedings and workshops. Regarding medical informatics, since 1997 he has collaborated with Azienda Ospedaliero-Università San Giovanni Battista of Turin (one of the major hospitals in Italy) within the GLARE project, for developing a prototype of a
domain-independent software system for acquisition, representation, and execution of clinical guidelines. Prof. Paolo Terenziani, in recognition of his research activity, won the “Artificial Intelligence Prize” from Italian Association for artificial intelligence in 1998. His paper “Representing and reasoning with temporal constraints in multimedia presentations” won the “Best Paper Award” at conference TIME 2000, 7-9 Luglio 2000, Cape Breton. His paper “Exceptions handling within GLARE clinical guideline framework” has been selected among more than 1000 papers, and awarded “Distinguished Paper” in American Medical Informatics Association AMIA 2012. His paper “A constraint-based approach for the conciliation of clinical guidelines” won the “Best Paper Award” at Ibero-American Conference on AI IBERAMIA’16, 2016.

Antonella Andolina was born in Siracuse in 1964. In 1990 she got the Laurea in computer science from the University of Turin. In 1991, she got the M.S. degree in informatics and automation from Consorzio per la Ricerca e l’Educazione Permanente (COREP), Turin. From October 20, 1991 to October 26, 1992, she worked as a software engineer and product manager at Mesar Team, Turin. Since October 27, 1992, she has been a professor in computer science. Currently, she is working with the Istituto Tecnico Commerciale Sommeiller, Turin. Her research interests mainly focus on artificial intelligence, and specifically the areas of knowledge representing and temporal reasoning.