Asymptotic Properties of a Dynamic Neural System with Asymmetric Connection Weights

YAN Ke-yu, ZHONG Shou-ming, YANG Jin-xiang
(School of Applied Mathematics, UESTC Chengdu 610054 China)

Abstract In this paper, based on new Lyapunov function, the asymptotic properties of the dynamic neural system with asymmetric connection weights are investigated. Since the dynamic neural system with asymmetric connection weights is more general than that with symmetric ones, the new results are significant in both theory and applications. Specially the new result can cover the asymptotic stability results of linear systems as special cases.

Key words asymmetric connection weights; global exponential stability; neural networks

The importance of global asymptotic stability (GAS) for neural networks, as well as the neural approach for solving optimization has attracted considerable attention, and considerable effort has been put into the investigation of their analysis and synthesis in recent years. Many condition for GAS of the network equilibrium point were given among previous study.

In this paper, we are concerned with the following dynamic neural system

$$\frac{du}{dt} = -u + P_D(Wu + \alpha q)$$ (1)

where $q \in \mathbb{R}^l$, α is positive constant, $W = E - \alpha M$, M is an $l \times l$ matrix, $\Omega = \{u \in \mathbb{R}^l | d_i \leq u_i \leq h_i, i \in I\}$, $I \subset L$, $L = \{1, 2, \cdots, l\}$, and $R^l \rightarrow \Omega$ is a projection operator which is defined by $P_D(u) = \{P_D(u_1), P_D(u_2), \cdots, P_D(u_l)\}$ and for $i \in L - I$, $P_D(u_i) = u_i$; for $i \in I$

$$P_D(u_i) = \begin{cases} d_i, & u_i < d_i \\ u_i, & d_i \leq u_i \leq h_i \\ h_i, & u_i > h_i \end{cases}$$

This dynamic system has two important properties. One is that its equilibrium point solves a linear variational inequality thus, from the viewpoint of continuous methods, it can solve linear and convex quadratic programming problems and bimatrix equilibrium points, and the analysis of piecewise linear resistive circuits[1~4]. Another property is that this dynamic system is easily implemented by using a circuit with a single layer of neurons, where W is called a weight matrix, and, thus, is very amenable for parallel implementation. Hence, Eq.(1) can be viewed as a useful neural model. So, the stability of related neural networks has been investigated in Refs.[5~11], and, the global asymptotic stability of the neural system (1) with a symmetric connection weight matrix W has been studied in Ref.[12]. In this paper, by using the property of the gap function and projection technique, we explore the global asymmetric connection weights[1,13,14]. In particular, our new results cover the asymptotic stability results of linear systems when $\Omega = R^l$.

1 Preliminaries

First, we make variable for the system (1), let

$$y = Wu + \alpha q$$ (2)

then

$$\frac{dy}{dt} = W \frac{du}{dt} = W \left[-u + P_D(y)\right] = -Wu + WP_D(y) = -y + WP_D(y) + \alpha q$$ (3)

Notice, we can rearrange the order of y_1, y_2, \cdots, y_l, make the index be included in I fore the r, consider $I = \{1, 2, \cdots, r\}$, then

$$L - I = \{r + 1, r + 2, \cdots, l\}$$

then let

$$y = \begin{bmatrix} y_{(1)} \\ y_{(2)} \end{bmatrix}, P_D(y) = \begin{bmatrix} L(y_{(1)}) \\ y_{(2)} \end{bmatrix}$$

$$W = \begin{bmatrix} W_{11} & W_{12} \\ W_{21} & W_{22} \end{bmatrix}, q = \begin{bmatrix} q_{(1)} \\ q_{(2)} \end{bmatrix}$$
So the system (3) can be decomposed as
\[
\begin{align*}
\frac{dy_i}{dt} &= -y_i + W_{i1}L(y_{i1}) + W_{i2}y_{i2} + \alpha q_{i1} \\
\frac{dy_{i2}}{dt} &= -y_{i2} + W_{21}L(y_{i1}) + W_{22}y_{i2} + \alpha q_{i2}
\end{align*}
\tag{4}
\]
Then
\[
\begin{align*}
\frac{dy_{i1}}{dt} &= -y_{i1} + W_{11}L(y_{i1}) + W_{12}y_{i2} + \alpha q_{i1} \\
\frac{dy_{i2}}{dt} &= -y_{i2} + W_{21}L(y_{i1}) + W_{22}y_{i2} + \alpha q_{i2}
\end{align*}
\]
\[\begin{align*}
y_i &= (y_{i1}, y_{i2}, \ldots, y_{iL})^T \\
y_{i2} &= (y_{i1}, y_{i2}, \ldots, y_{iL})^T \\
L(y_{i1}) &= (P_{i1}(y_{i1}), P_{i2}(y_{i2}), \ldots, P_{iL}(y_{iL}))^T \\
q_{i1} &= (q_{i1}, q_{i2}, \ldots, q_{iL})_1^T \\
q_{i2} &= (q_{i1}, q_{i2}, \ldots, q_{iL})_2^T
\end{align*}\]

Notice that if \(M = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix}\), the relation between \(W_i\) and \(M_i\) can be written as follows:
\[
\begin{align*}
W_{i1} &= E - \alpha M_{i1} \\
W_{i2} &= -\alpha M_{i2} \\
W_{11} &= E_{i1} - \alpha M_{i1} \\
W_{21} &= -\alpha M_{i2}
\end{align*}
\]

When \(i \in I\), from the definition of \(P_{i1}(u_i)\), it is easy to know output response function \(p_{i1}(y_i)\) (\(i \in I\)) satisfy:
1) \(P_{i1}(y_i): R \rightarrow R\) is continuous function and have upper right derivative;
2) \(P_{i1}(y_i) \in R\), \(P_{i2}(y_i)\) is bounded function;
3) \(0 \leq D^rP_{i1}(y_i) \leq 1\).

Theorem 1 If \(M_{22}\) is reversible, then the system (4) have equilibrium point.

Proof If the system (4) have equilibrium point \(y^* = (y_{i1}^*, y_{i2}^*, \ldots, y_{iL}^*)^T\), then we have
\[
\begin{align*}
-y_{i1}^* + W_{11}L(y_{i1}^*) + W_{12}y_{i2}^* + \alpha q_{i1} &= 0 \\
-y_{i2}^* + W_{21}L(y_{i1}^*) + W_{22}y_{i2}^* + \alpha q_{i2} &= 0
\end{align*}
\tag{5}
\]

The following equation can be got
\[
\begin{align*}
y_{i1}^* &= \frac{1}{\alpha} M_{12}^2 W_{21} L(y_{i1}^*) + M_{22}^2 q_{i2} \\
y_{i2}^* &= \frac{1}{\alpha} M_{12}^2 W_{21} L(y_{i1}^*) + M_{22}^2 q_{i2}
\end{align*}
\]
\[
\begin{align*}
y_{i1}^* &= \left[E_{i1} - \alpha (M_{11} + M_{12} M_{22}^2 M_{21}) \right] L(y_{i1}^*) + \\
&\quad \alpha (q_{i1} - M_{12} M_{22}^2 q_{i2}) \\
y_{i2}^* &= -M_{12}^2 M_{21} L(y_{i1}^*) + M_{22}^2 q_{i2}
\end{align*}
\tag{6}
\]

Therefore, the necessary and sufficient condition for system (4) to have equilibrium point is that Eq. (7) has solution.

Do mapping \(F: R^I \rightarrow R^I\), then
\[
F(y) = Af(y) + b \tag{8}
\]
and
\[
A = \begin{bmatrix} E_{i1} - \alpha (M_{11} + M_{12} M_{22}^2 M_{21}) & 0 \\ -M_{12}^2 M_{21} & 0 \end{bmatrix} \quad f(y) = \begin{bmatrix} L(y_{i1}^*) \\ 0 \end{bmatrix} \quad b = \begin{bmatrix} \alpha (q_{i1} - M_{12} M_{22}^2 q_{i2}) \\ M_{22}^2 q_{i2} \end{bmatrix}
\]

Define a convex set as
\[
\Omega = \left\{ x \mid x \in R^I \text{ and } \| x - b \| \leq \| A \| M^* \right\}
\]
then
\[
\| F(y) - b \| = \| Af(y) \| \leq \| A \| \| f(y) \| \leq \| A \| M^*
\]
from Eq. (8), we can know
\[
\| F(y) - b \| \leq \| A \| \| f(y) \| \leq \| A \| M^*
\]

where \(F\) is continuous mapping and \(F: \Omega \rightarrow \Omega\), \(\Omega\) is closed convex set from Brouwer fixed-point theorem, \(F\) has at least one fixed point \(y^*\), we have
\[
y^* = F(y^*) = Af(y^*) + b
\]

Namely the Eq. (2) have solutions, thereby we can know the system (4) have equilibrium point.

From Theorem 1, we can know that the system (4) has equilibrium points, let \(y^* = (y_{i1}^*, y_{i2}^*, \ldots, y_{iL}^*)^T\) be equilibrium point for system (4), by means of the coordinate transformation:
\[
x = y - y^*
\]
then
\[
x_{i1} = y_{i1} - y_{i1}^* \\
x_{i2} = y_{i2} - y_{i2}^*
\]
then system (4) can be put into the equivalent
\[\begin{align*}
\frac{dx_{11}}{dt} &= -x_{11} + W_{11}f(x_{11}) + W_{12}x_{12} \\
\frac{dx_{12}}{dt} &= -\alpha M_{12}x_{12} + W_{21}f(x_{11})
\end{align*} \tag{9} \]

Then \(f(x_{11}) = L(x_{11}, y_{11}) - L(y_{11}) \), thus, system (9) can be put into the equivalent system
\[\begin{align*}
\frac{dx_{11}}{dt} &= -x_{11} + (E - \alpha M_{11})f(x_{11}) - \alpha M_{12}x_{12} \\
\frac{dx_{12}}{dt} &= -\alpha M_{21}x_{12} - \alpha M_{22}f(x_{11})
\end{align*} \tag{10} \]

2 Main Results

Theorem 2 If the system (10) satisfies
\[E_{r} - \alpha M_{11} + \frac{\alpha}{2} \left(\| M_{12} \| + \| M_{21} \| \right) < 1 \]
\[\frac{1}{2} \left(\| M_{11} \| + \| M_{21} \| \right) < \lambda_{\min} \left(\frac{M_{12}^{2} + M_{22}^{2}}{2} \right) \]

thus, the zero solution of the system (10) is globle exponential stability (GES), the trivial solution of the system (1) is GES.

Proof By the condition on
\[\lambda_{\min} \left(\frac{M_{12}^{2} + M_{22}^{2}}{2} \right) > 0, \quad M_{22} \text{ is reversible, so the system (4) has equilibrium point, through coordinate varying, system(4) is turned into system(10).} \]
\(V(x) \) is positive definite. \(V(x) \) has infinitely great upper bounded and infinitesimal lower bounded. We use the Liapunov function for the system (10), then
\[V(x) = x_{11}^{T}(t)x_{11}(t) + x_{12}^{T}(t)x_{12}(t) \]

We see easily \(V(x) \) is positive definite and unbounded function. Along the trajectories of Eq.(4), the time derivative of \(V(x) \) is given by the following equation
\[\frac{dV}{dt}(t_{0}) = -2x_{11}^{T}x_{11} + 2x_{11}^{T}(E_{r} - \alpha M_{11})f(x_{11}) - 2\alpha x_{11}^{T}M_{12}x_{12} - 2\alpha x_{12}^{T}x_{12} + 2\alpha \left(M_{12}^{2} + M_{22}^{2} \right) x_{12} \]
\[- 2\alpha x_{12}^{T}M_{12}f(x_{11}) \leq -2\|x_{11}\|^{2} + 2\|x_{12}\|^{2} \]
\[- \alpha M_{12} \left\| x_{11} \right\| f(x_{11}) + 2\alpha \| M_{12} \| \left\| x_{11} \right\| x_{11} \]
\[\| x_{22} \|^{2} + 2\alpha \left(M_{12}^{2} + M_{22}^{2} \right) \| x_{22} \| \]
\[\| x_{22} \| \leq -2\|x_{11}\|^{2} + 2\|x_{12}\|^{2} \]
\[2\alpha M_{22} \left\| x_{11} \right\| \left\| x_{22} \right\| \leq 2\alpha M_{22} \| x_{11} \| \| x_{22} \| \leq 2\alpha M_{22} \left\| x_{12} \right\| ^{2} \]
\[\frac{dV}{dt}(t_{0}) = -2\|x_{11}\|^{2} + 2\|x_{12}\|^{2} - \alpha(\| M_{12} \| \| x_{11} \| + \| x_{22} \|) \]
\[\leq -2\|x_{11}\|^{2} + 2\|x_{12}\|^{2} - \alpha(\| M_{12} \| \| x_{11} \| + \| x_{22} \|) \]
\[\leq -2\|x_{11}\|^{2} + 2\|x_{12}\|^{2} - \alpha(\| M_{12} \| \| x_{11} \| + \| x_{22} \|) \]

Thus, the zero solution of the system (10) has GES, of the system is GES. From the result, we can deduce that the equilibrium point of the system (10) is uniqueness, further, the equilibrium point of the system (1) is also uniqueness.

We consider weight formally about the system (10)
\[\begin{align*}
\frac{dx}{dt} &= -x + \sum_{j=1}^{r} (\epsilon_{j} - \alpha m_{j}) f(x_{j}) - \alpha \sum_{j=1}^{r} m_{j} x_{j} \\
\frac{dx_{j}}{dt} &= -\alpha \sum_{j=1}^{r} m_{j} x_{j} - \alpha \sum_{j=1}^{r} m_{j} f(x_{j})
\end{align*} \]

Then \(\epsilon_{j} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases} \quad (i, j = 1, 2, \ldots, r) \),
\[M = (m_{j})_{r \times r} \]

Theorem 3 If the system (11) satisfies
\[\sum_{j=1}^{r} (\epsilon_{j} - \alpha m_{j}) + \alpha \sum_{j=1}^{r} m_{j} \leq 0 \]
\[\sum_{j=1}^{r} m_{j} \leq \lambda_{\min} \left(\frac{M_{12}^{2} + M_{22}^{2}}{2} \right) \]

\[\alpha M_{22} \left\| x_{11} \right\| \left\| x_{22} \right\| \leq 0 \]
such that the zero solution of the system is GES, further, the trivial solution of the system is GES.

Proof We use the Liapunov function for the system (12): $V = \sum x_i^2$.

We see easily $V(x)$ is positive definite and unbounded function. Along the trajectories of system (12), the derivative of $V(x)$ is given by the following equation

$$D^TV(x)|_{(12)} = \sum_{j>i}^n \frac{dx_i}{dt} \text{sgn}(x_i) =$$

$$\sum_{j>i}^n (e_{ij} - a_{ij}m_{ij}f(x_j) - a\sum_{j>i}^n m_{ij}x_j) x_i$$

$$\sum_{j>i}^n (e_{ij} - a\sum_{j>i}^n m_{ij}f(x_j)) x_i$$

Therefore, the trivial solution of the system (1) is GES.

Conclusions

In this paper, we have studied the global exponential stability of a dynamic neural system with asymmetric weights using two new Liapunov function. The obtained stability result of system (1) naturally generalizes the stability result of linear systems, in contrast to the existing results by Forti and Tesi, which cannot cover linear dynamic systems. As asymmetric weight cases are more common than symmetric ones, the obtained results are very useful from both theoretical and applicational points of view.

References

(Continued on page 86)
References

Brief Introduction to Author(s)

CHENG Li (程励) was born in 1970 in Sichuan, China. He is now pursuing Ph.D. degree in UESTC and also an assistant professor with Sichuan University. His research interests include tourism management science and technology.

LI Shi Ming (李仕明) was born in 1953 in Sichuan, China. He received the Ph.D. degree from Southwestern University of Finance and Economics. He is now a professor and doctoral advisor with UESTC. His research interests include strategic management and regional economy.

GAN Lu (甘露) was born in 1973 in Sichuan, China. He received the Ph.D. degree from Chinese Academy of Science. He is now an assistant professor in Sichuan University. His research interests include tourism information systems, GIS.

Brief Introduction to Author(s)

YAN Ke-yu (鄢克雨) was born in 1976. He is pursuing his M.S. degree in operational research and cybernetics at UESTC. His research interests include the stability of the neural system.

ZHONG Shou-ming (钟守铭) is now a professor at UESTC. His research interests include the stability of the neural system and the robust of the control system.

YANG Jin-xiang (杨金祥) was born in 1972. He is pursuing his M.S. degree in operational research and cybernetics at UESTC. His research interests include the study of the neural network.